Нечетко-логическое моделирование устойчивости предприятий: нетрадиционные аспекты

А. Н. Козловский Северо-западный открытый технический университет Санкт-Петербург, Россия domby@bk.ru А. О. Недосекин ООО «СИ-ФИНАНС», МАНЭБ Санкт-Петербург, Россия sedok@mail.ru

3. И. Абдулаева¹, Т. А. Никитина²
Санкт-Петербургский политехнический университет Петра Великого
Санкт-Петербург, Россия

¹abdulaeva_zi@spbstu.ru, ²nik_tatiana@spbstu.ru

Аннотация. Цель: Кратко описать нетрадиционные направления моделирования устойчивости предприятий и отраслей.

Метод: Предлагается 6 нетрадиционных направлений обеспечения устойчивости и соответствующих линий научного сопровождения: инструменты системной мобилизации, фондирование цифровыми активами. хеджирование рыночных рисков, оптимизация промышленного портфеля, оптимизация портфеля инновационных проектов, трансформация корпоративной культуры. заявленные направления успешно моделируются нечетко-логическими системами.

Результат: Открывается новое поле научной деятельности, связанное с интенсивным применением нечётко-логических моделей и методов в исследованиях устойчивости широкого спектра.

Выводы: Устойчивость на уровне отдельных предприятий, экосистем и отраслей может быть обеспечена как традиционными, так и нетрадиционными методами. Во всех случаях, применение нечётких описаний в рамках научного обеспечения заявленной деятельности является крайне желательным.

Ключевые слова: устойчивость; цифровые активы; нечеткие модели устойчивости; матрица 4х6

І. Введение

Система предприятия на уровне функциональной модели может быть представлена кибернетической петлями системой, охваченной положительных отрицательных обратных связей. Чтобы обеспечить функционирования предприятия, **устойчивость** необходимо настроить параметры управления в контуре обратной связи. Это возможно, когда сформировалось модельное представление об условиях внешней среды воздействующих на предприятие в негативном или позитивном ключе. Управляющая надсистема предприятия вырабатывает такие управленческие сигналы, которые развитие блокируют негативных воздействий, либо наоборот поддерживают тенденции, которые позитивно сказываются на предприятии и выводят его на новый уровень развития. В обоих случаях, следует подвергать моделированию как традиционные, так и нетрадиционные способы обеспечения устойчивости.

II. МОДЕЛИ И МЕТОДЫ ОБЕСПЕЧЕНИЯ УСТОЙЧИВОСТИ

Устойчивость предприятия в настоящем докладе понимается нами как способность предприятия достигать своих стратегических целей в установленный срок в условиях внешних вызовов [1, 2, 3]. Все методы обеспечения устойчивости предприятия можно условно подразделить на традиционные и нетрадиционные.

традиционным методам относится всё, наращивает отдачу на собственный капитал предприятия по уровню чистой прибыли (ROE), в соответствии с разложением Дюпона, в котором участвуют чистая рентабельность, оборачиваемость пассивов и финансовый рычаг (соотношение заёмных и собственных пассивов). При этом каждое предприятие позиционирует себя одновременно в двух сегментах: в «алом» и в «голубом» океанах, в смысле Ким-Моборн [4]. В «алом» океане управлению поддаётся только оборачиваемость, а в «голубом океане» основное внимание сосредоточено на максимизации рентабельности. Когда не удаётся оптимизировать ни рентабельность, ни оборачиваемость, последним драйвером роста выступает финансовый рычаг. В крупнейших международных компаниях уровень рычага составляет 5 и более, что естественным образом порождает высокие риски потери платёжеспособности, т.е. потери устойчивости. Можно уверенно утверждать, традиционные методы обеспечения экономической устойчивости исчерпали свой потенциал, и нужно сосредоточиться на нетрадиционных методах обеспечения устойчивости, к которым мы относим следующие основные шесть:

• инструменты системной мобилизации [5, 6]. Речь идёт о добровольной национализации производственных фондов, с выводом за периметр компаний с государственным участием активов с низким уровнем рыночной отдачи. Потом эти

активы возвращаются в компанию, но уже на условиях аренды (концессии). Национализация активов идёт синхронно с национализацией долгов;

- фондирование предприятий цифровыми активами [7]. Здесь есть четыре основных перспективных кейса: реализация экспортных операций по схеме «товар в обмен на электричество; корпоративный криптовалютный пенсионный фонд; скидочные программы на розничные товары, реализуемые в периметре холдинга; электронные долговые расписки в периметре промышленных кластеров;
- хеджирование рыночных рисков с помощью производных финансовых инструментов [8]. Здесь, наряду с долгосрочными финансовыми опционами (прежде всего, азиатского стиля), уместно использовать краткосрочные стратегии алгоритмической торговли фьючерсами на сырьевые товары и валютные пары;
- оптимизация промышленного портфеля Голдратту [9]. Формируется портфель прямых проектных инвестиций, состоящий ИЗ бизнес-инициатив, направленных максимизацию «прохода» маржинальной прибыли, оседающих в соответствующих центрах финансовой ответственности. Оптимизация проводится градиентным методом;
- оптимизация портфеля промышленных инноваций [5, 10]. Здесь целевой функцией выступает уже шанс инновационного портфеля, а эффективность и риски выступают ограничениями снизу и сверху соответственно. При оптимизации также применяется градиентный метод;
- корпоративной трансформация предприятия, с наращиванием частоты вибраций в смысле Лалу [11]. Подавляющее большинство российских предприятий позиционированы в За счёт внедрения «янтарной» парадигме. компонент «оранжевой» и «зелёной» парадигм, удаётся повысить организационную гибкость, сократить время принятия решений, усилить самообучения и самоорганизации, повысить приверженность стейкхолдеров организации.

Все перечисленные нетрадиционные механизмы обеспечения устойчивости весьма успешно поддаются моделированию с использованием нечетко-логических описаний. В рамках реализации инициатив нашей группы, наиболее часто применяемыми моделями и методами анализа устойчивости являются следующие:

 стратегическая матрица 4x6 – базовый каркас моделирования устойчивости организации, связывающий воедино шесть основных стратегических карт: Угрозы, Возможности, Организация, Риски, Шансы, Решения;

- система сбалансированных показателей на нечетких связях – ядро модели матрицы 4х6;
- матричный агрегатный вычислитель [12] (одноуровневый и двухуровневый);
- система нечетко-логического вывода на знаниях, включая вырожденный случай системы логических матриц;
- многокритериальная система оптимизации портфеля прямых инвестиций в нечеткой постановке задачи.

Моделированию подлежат: логика бизнеса, сценарии внешних воздействий, прикладываемых к системе (негативного и позитивного характера), риски и шансы, ответные проектные решения. Общая логика моделирования такова:

- внешний вызов рассматривается системой как информационный сигнал, поступающий на экзогенный вход системной модели;
- далее этот сигнал распространяется по системе, вызывая в ней локальные и глобальные последствия. К числу негативных последствий относится выход показателей локальной эффективности системы (KPI) за нормативные уровни;
- поскольку входной сигнал имеет нечёткую форму, то и последствия его распространения также принимают в модели нечеткий вид. Возможность негативного выхода параметров системы за нормативы – это риск; то же самое, но в позитивном аспекте, рассматривается как шанс;
- выходные сигналы об эффективности организационной системы, ей рисках и шансах, поступают на вход стратегической карты Решения, где вырабатываются ответные сигналы о корректировке организационной системы, обычно выраженные в форме отдельных проектных инициатив. Данные инициативы подлежат нечеткологическому моделированию, а соответствующие информационные сигналы также прикладываются к экзогенным входам модели организационной системы:
- таким образом, устойчивость организации на модельном уровне обеспечивается за счет корректировки сигналов вызовов, по линии отрицательной обратной связи по управлению.

III. ЗАКЛЮЧЕНИЕ

Отметим, что нетрадиционные методы обеспечения устойчивости предприятия оказываются значительно более эффективными, чем традиционные. Эти методы следует применять в первую очередь тогда, когда потенциал классических методов, (наращивание оборачиваемости и рентабельности исчерпывается).

Список литературы

- [1] Недосекин А.О., Рейшахрит Е.И., Козловский А.Н. Стратегический подход к оценке экономической устойчивости объектов минерально-сырьевого комплекса России // Записки Горного института. 2019. Т. 237. С. 354-360.
- [2] Nedosekin A., Reishahrit E., Kozlovsky A. Estimation of economic resilience as a fuzzy-logical scientific task // In: Proceedings of the 20th International Conference on Soft Computing and Measurements, SCM 2017, pp. 752-753.
- [3] Vinogradov V., Abdoulaeva Z. Fuzzy-set economic stability analysis model of mineral complex of the Russian Federation // In: Proceedings of the 19th International Conference on Soft Computing and Measurements, SCM 2016, 7519822, pp. 489-490.
- [4] Ким В. Чан. Стратегия голубых океанов. Как найти или создать рынок, свободный от других игроков / В. Чан Ким, Р. Моборн; пер. с англ. И. Ющенко. 5-е изд. М.: Изд. Манн, Иванов и Фербер, 2015. 304 с.
- [5] Недосекин А.О. Альтернативные методы инвестирования базовых отраслей экономики РФ // Записки Горного института. 2016. Т. 219. С. 482−489.

- [6] Недосекин А.О., Рейшахрит Е. И. Мобилизационная экономика порусски. СПб: СПбГПУ, 2015. 124 с.
- [7] Недосекин А.О., Рейшахрит Е.И., Абдулаева З.И. Российский крипторубль инструмент для устойчивого развития экономики РФ // Экономика и предпринимательство. 2017. №9-1 (86-1). С. 65-71.
- [8] Недосекин А.О., Калюта В.Ю., Терновая Я.О. Управление ценовыми рисками в нефтегазовой отрасли. СПб: СПбГПУ, 2015. 183 с.
- [9] Козловский А.Н., Недосекин А.О., Рейшахрит Е.И., Абдулаева З.И. Портфельная интерпретация теории ограничений Э. Голдратта // Корпоративное управление и инновационное развитие экономики Севера. 2019. №4. С. 99-107.
- [10] Козловский А.Н., Недосекин А.О., Абдулаева З.И. Управление портфелем промышленных инноваций. СПб: СПбГПУ, 2016. 131 с.
- [11] Лалу Ф. Открывая организации будущего. М.: Изд. Манн, Иванов и Фербер, 2016. 432 с.
- [12] Abdoulaeva Z., Kurbanbaeva D., Topuzov M. Application of the matrix aggregate calculator (MAC) for forecasting disease recommendation // Proceedings of International Conference on Soft Computing and Measurements, SCM 2017, pp. 684-685.