
198

Towards Optimization of Big Numbers

Computation through an AI Pre-trained

Model and Graph Traversal

Omar T. Mohammed
1
, Moeid S. Heidari

2
,

Alexey A. Paznikov
3
, Mikhail S. Kupriyanov

4

Department of Computer Science and Engineering

Saint Petersburg Electrotechnical University "LETI"
1
omar.taha.mohammed@gmail.com,

2
moeidheidari@mail.ru,

3
apaznikov@gmail.com,

4
mskupriyanov@etu.ru

Abstract. Nowadays we see that multicore computers are able

to easily manipulate digit numbers with a size up to 64 bits

however as numbers get bigger the computation becomes more

complex, the reason is that the size of both CPU registers and

buses are limited. As a result, the arithmetic operations such as

addition, subtraction, multiplication and division for CPU

become more complex to perform. For solving the problem of

how to do computation on big digit numbers, a number of

algorithms have been developed. However, the existing

algorithms are noticeably slow because they operate on bits

individually and are designed to run over single-core computers

only. In this paper, an AI model is presented that performs a

computation on tokens of 8 digit numbers to assist boost the CPU

computation performance.

Keywords: node iteration algorithm; big digit numbers

computation; parallel algorithm; machine learning

I. INTRODUCTION

Modern computer systems (CS) can very well handle and
perform computations with numbers that have a length not
bigger than (32 or 64) bits [1]. However, when those numbers
become larger in size then the time for performing arithmetic
operations, such as addition, subtraction, multiplication and
division increases. This issue happens due to a number of
different constraints related to the architecture of hardware and
programming language. Because the majority of nowadays
CPU registers are 32 or 64 bits, they can only accommodate
numbers of that length [2]. Additionally, data types in
programming languages are kind of a culprit, for instance, in
the foremost programming languages, data of an integer can
hold up to 32 bits, and a long data integer can hold up to 64
bits. Many algorithms and methods have been developed
directing to solve this problematic of arithmetic calculations on
big numbers; though, all of them implement the same
principles: first they convert big numbers from base 10 to base
2, after that they execute bit-wise operations on the bit level [3,
4]. For example, arithmetic addition can be performed using
the bit-wise logical operators XOR and OR. Those algorithms

have complexity of O(n), where n represents the total number
of bits composing each of the big operands.

In this paper, we propose an AI model trained on a set of
numbers from a range 1 to 8 digits long with its corresponding
targets to predict an accurate result of a specific mathematical
computation. The aim behind this model is to reduce the
execution and time complexity on CPU.

II. RELATED WORKS

Many programming libraries have been developed to solve
one of the most common problems which is performing
arithmetic computations on big-integer numbers. Moreover,
most of these libraries are not designed to work in a parallel
fashion but are to operate over single-core systems [5, 6, 7].
Most of the researches and publications have been done to
provide a clarification for arithmetic addition on enormous
integer numbers tackle the problem not from a software
algorithmic perspective but from a hardware perspective. For
example, Fagin [8] suggested an enhancement for the carry
look ahead adder. His idea revolves around the use of a
massively parallel computer with a big number of processors
that reaches thousands, each processor has a connection with
local memory and also has a communication network. In order
to distribute integers to be added between processors, some
techniques of parallel prefix are take on to quickly do addition
of large numbers in faster than if conventional machines were
in place. Avizienis [9] drafted a representation diagram for
binary numbers used in fast parallel calculation. This diagram
turns around replicating each input operands so as to get rid of
the chain carry propagation during an arithmetic addition and
subtraction [10, 11].

This paper is organized as follows. Section 1 is an
introduction of how computer systems handle arithmetic
operations and then a snapshot of our AI approach. Section 2 is
about previous works have been done related to the
development of different algorithms that were suggested to
improve the performance of CPU handling arithmetic
calculations. Section 3 tackles our first approach of performing
mathematical calculations which is through a node iteration
technique, an example of addition has been described with it’s
schema. Section 4 drafts the limitation of the provided
approach and the reason behind it. Section 5 explains briefly
our second approach which is performing arithmetic

* The reported study was funded by RFBR according to the research
projects № 19-07-00784, 18-57-34001 and was partially supported by Russian

Federation President Council on Grants for governmental support for young

Russian scientists (project SP-4971.2018.5).

199

calculations through an AI pre trained model that can partially
enhance CPU performance in handling some repetitive
arithmetic tasks such as addition in particular. An example of
addition has been provided with the structure of the model
dataset is also described in details, plus a comparison in
execution time of performing an addition calculation has is
mentioned between CPU and the pre trained model. One other
thing this section has is an introduction of how neural networks
works with some information of how our model was created.
Section 6 shares the execution time results of a conducted
experiment of an addition operation for both CPU and our AI
pre trained model, it shows the difference between them in
terms of timing and the reason of getting such results. Section 7
drafts some limitations of our proposed AI approach. Finally,
Section 8 presents our conclusion and future works.

III. NODE ITERATION APPROACH

In this approach, we will generate a directional graph of
operands and results as nodes of the graph and edges for
directions. For the next operations we will iterate the generated
graph to find the result, at first if we find the result we will
return it and if not then it means that we didn't calculate such
an operation before, o we need to do the operation in tradition
way and store the operands and results as new nodes in the
graph with specified directed edges for next usage. We will
store the graph in a shared mid extra memory with high access
speed to be useful for all threads. In this approach, the learned
and generated graph will be shared with other computer
resources. We need to find the most efficient algorithm to
iterate the generated graph with minimal time. In this approach,
each graph has two list of pointers a list of directed operation
and a list for result pointers. Let us do the operation for
2+2+1+542+543+6 (Fig. 1).

Fig. 1. Example schema 1

In this example we find the first operation node in the graph
which is 2. After that we find a pointer pointing to the second
operation as it is node 1. And from the second operand node

we find a result pointer which is specified to the node 2 result
which is node 3. And in this way, we can find the result of 2+1
= 3 by graph iteration.

We can illustrate our approach as below (Fig. 2, 3).

Fig. 2. Class diagram

1: template <typename T>

2: bool Contains(std::vector<T> &Vec, int &number){

3: bool found = false;

4: std::find_if(Vec.rbegin(), Vec.rend(),

5: [number, &found](const T &n) -> bool {

6: found = (((Node)n).getValue() == number);

7: return found; })

8: return found; }

9: template <typename T>

10: bool Contains(std::vector<T> &Vec, int &number){

11: bool found = false;

12: std::find_if(Vec.rbegin(), Vec.rend(),

13: [number, &found](const T &n) -> bool {

14: found = (((Node)n).getValue() == number);

15: return found; })

16: return found; }

Fig. 3. Hash table code implemented in C++

IV. LIMITATIONS

In the traditional way of calculation, we have just two
memory access and because of this reason we can obtain the
result much faster. In our approach we have slower results
because we need some other memory accesses. So, if we want
to implement such approach in reality we need to store our
graph in a much faster memory with higher speed of access to
get the desired result. And calculating the time needs some
time in this example and memory access time also is variable in
any system.

So, average memory access time = miss rate0 + hit time0 *
(miss rate1* miss penalty1+ hit time1)

200

Fig. 4. Current computation process between CPU and Memory

ResultTime=Result time – (memory access time * number
of new accesses). this approach is not going to be useful for
single operation calculation but also for any other complex
operations to avoid repeated calculations.

V. THE PROPOSED AI APPROACH

As we know artificial neural network and deep learning
models, are considered among the most powerful prediction
tools that machine learning can offer, they are suited to solve
perceptual problems. Artificial intelligence (AI) is very good
also at handling some repetitive tasks. For example in a
workplace AI will help hiring managers and recruiters to better
match potential candidates for jobs. Based on this principle we
found to use AI not to help human as a goal in this paper but to
help the computer itself particularly CPU with preforming
some repetitive tasks such as some frequent arithmetic
calculations specially when it’s getting done on big numbers.
In this paper, we focused on the addition arithmetic and how to
use machine learning to best help CPU with performing
repetitive summations.

Taking an example the CPU can easily compute addition of
two numbers, for instance, 17 + 54 in a matter of nanoseconds,
while computing a bigger number with another big number e.g.
1697458765 + 2536844568 is definitely heavier on CPU and
will take longer time to execute. With the development of deep
learning, we see that there have been a big success for such
kinds of problems. In this paper, and for the sake of easy
understanding and simplicity, we attempted to train a neural
network on a simple arithmetic addition, the addition of two
numbers and then we tried to predict the value answer through
our trained model. The structure of the dataset consisted of two
inputs and one output. The model has been trained on 1 million
entries of integer type with its corresponding target outputs
starting from zero incrementing to one million, and it was
tested to provide accurate results on integer numbers ranging
from 1 million to 10 million regardless to the trained set itself.
The result is that we created a model that is able to accurately

predict the addition of two integer numbers ranging from zero
to ten million that is ready to save the CPU from performing
addition calculations within this range, especially when CPU is
in need to do a huge amount of tasks of such kind repeatedly.
One interesting fact we have noticed was that after testing the
execution time of CPU for performing a summation of two
small integers was slightly more than the time our trained
model took to predict the summation of the same numbers see
(Fig.7). Nevertheless, the main goal is not to compete with
CPU abilities but to assist it to perform faster.

Fig. 5. Neural network

As we can see in (Fig. 5) it’s basically the simplest neural
network there is, a perceptron, with no hidden layers and the
identity function f(x) = x as activation function. It’s really just
linear regression in disguise. As long as you pass in empty
values as 0, this network can learn how to add an arbitrary
number of values up to N by finding a weight vector W of
length N containing all 1s which we used for an experiment the
addition of two digits. Of course, more complex networks
could learn other arithmetic operations as well, but linear
regression is already overkill for this task. Keras library has
been used for creating the model which is a part of Tensorflow
library see (Fig. 6).

After training the model on 1 million input data we have
tried to measure the execution time that both CPU and the
model is taking to perform one calculation by testing it on a
calculation of a single addition of two integer numbers. The
test was done using timeit library in Python programming
language, it was executed in windows 10 MSI notebook, core
i7-8750H 8th Gen 2.2GH (12 CPUs), 16 GB Ram, As we can
see in the result table (Fig. 7) the time that the CPU took to
perform that calculation was longer by 10 nano-seconds
compare to our AI trained model execution time. We believe
the reason of getting such results is related to the method that
CPU is using to perform an addition operation which is
different and more complex from our neural network method.
Both CPU and neural network methods have been explained in
this paper already.

201

1: from tensorflow import keras

2: import numpy as np

3: import dataset as dc

4: model = keras.Sequential([

5: keras.layers.Flatten(input_shape=(2,)),

7: keras.layers.Dense(25, activation='relu'),

8: keras.layers.Dense(25, activation='relu'),

9: keras.layers.Dense(25, activation='relu'),

10 keras.layers.Dense(1)])

11:

model.compile(optimizer='adam',loss='mse',metrics=['mae'])

12: model.fit(dc.train_data, dc.train_targets, epochs=20,

13:batch_size=1)

14: setupcode = "s = 0"

15: function = '''a = 13+56 '''

17: print ("CPU execution time of two digits addition =

18:",(timeit.timeit(setup = setupcode, number = 100)))

19: setupcode1 = "r = 0"

20: function = '''b = model.predict(np.array([[13,56]])'''

21: print ("AI pre-trainded model execution time of two digits

22:addition = ",(timeit.timeit(setup = setupcode1, number =

23:100)))

Fig. 6. Hash table code implemented in Python

VI. EXPERIMENTAL RESULTS

Test Case Operation Results Execution Time in

Nano-Seconds

CPU A+B Y 1.30 ns

AI pre-
trained

model

A+B Y 1.10 ns

Fig. 7. Result table

VII. LIMITATIONS

The model needs to be accurately and specifically trained,
it also requires big amounts of structured training data and
learning have to be generally supervised. Also it require
offline batch data for training. Plus it cannot learn effectively
in real time.

VIII. CONCLUSION AND FUTURE WORKS

The discussed approach of node iteration of graph data,
were examined in practice. We see that our approach has some
limitations. Based on our first experiment see (Fig. 3) we can
state that the increase above this threshold does not result in
faster processing. This phenomenon was caused due to the
necessity of more data exchange that are extensive in case of a
big numbers of parallel machines. And the second approach as
we can see in the experiment there is a difference in time

between CPU execution and AI pre-trained model by
approximately 20 nanoseconds which gave a faster
performance, we conclude this paper by stating that involving
artificial intelligence in arithmetic operation is still evolving
and this project might be a step towards improving such
interaction.

Future research can improve upon our proposed
approaches by combining them together so that other
arithmetic operations such as subtraction, multiplication, and
division are added. Besides, a disseminated version of the
same approach could be designed so that it can be
implemented over a network of regular machines, making the
execution less expensive and more accessible, also we will
target to develop our model to learn in real time.

REFERENCES

[1] C. Maxfield and A. Brown, “The Definitive Guide to How Computers
Do Math: Featuring the Virtual DIY Calculator,” Wiley-Interscience.
2004.

[2] J. Hennessy and D. Patterson, “Computer Architecture: A Quantitative
Approach,” 4th Edition, Morgan Kaufmann, 2006.

[3] D. Knuth, “Art of Computer Programming, Volume 2: Seminumerical
Algorithms,” 3rd Edition, Addison-Wesley Professional, 1997.

[4] I. Koren, “Computer Arithmetic Algorithms,” 2nd Edition, AK Peters
Ltd, 2001.

[5] A. Paznikov and Y. Shichkina, “Algorithms for Optimization of
Processor and Memory Affinity for Remote Core Locking
Synchronization in Multithreaded Applications,” Information, vol. 9, i.
1, 2018, pp. 21.

[6] E.A. Goncharenko, A.A. Paznikov, and A.V. Tabakov, “Evaluating the
performance of atomic operations on modern multicore systems,”
Journal of Physics: Conference Series, 2019, vol. 1399, no. 3, pp.
033107

[7] A.A. Paznikov, V.A. Smirnov, and A.R. Omelnichenko, “Towards
Efficient Implementation of Concurrent Hash Tables and Search Trees
Based on Software Transactional Memory,” in Proc. Of the 2019
International Multi-Conference on Industrial Engineering and Modern
Technologies (FarEastCon), 2019, pp. 1-5.

[8] B. Fagin, “Fast Addition of Large Integers,” IEEE Transactions on
Computers. 1992.

[9] A. Avizienis, “Signed-digit number representations for fast parallel
arithmetic,” IRE Trans. Elec. Comput, 2003, vol. 10, pp. 737-740.

[10] Youssef Bassil, Aziz Barbar, “Sequential & Parallel Algorithms For the
Addition of Big-Integer Numbers,” vol. 4, no. 1, 2010, pp. 52-69.

[11] A.V. Tabakov and A.A. Paznikov. “Algorithms for Optimization of
Relaxed Concurrent Priority Queues in Multicore Systems,” in Proc. of
the 2019 IEEE Conference of Russian Young Researchers in Electrical
and Electronic Engineering (EIConRus), 2019, pp. 360-365.

https://www.sciencedirect.com/science/article/pii/S0167739X13001726#f000050

