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Abstract. Nowadays we see that multicore computers are able 

to easily manipulate digit numbers with a size up to 64 bits 

however as numbers get bigger the computation becomes more 

complex, the reason is that the size of both CPU registers and 

buses are limited. As a result, the arithmetic operations such as 

addition, subtraction, multiplication and division for CPU 

become more complex to perform. For solving the problem of 

how to do computation on big digit numbers, a number of 

algorithms have been developed. However, the existing 

algorithms are noticeably slow because they operate on bits 

individually and are designed to run over single-core computers 

only. In this paper, an AI model is presented that performs a 

computation on tokens of 8 digit numbers to assist boost the CPU 

computation performance.  

Keywords: node iteration algorithm; big digit numbers 

computation; parallel algorithm; machine learning 

I. INTRODUCTION 

Modern computer systems (CS) can very well handle and 
perform computations with numbers that have a length not 
bigger than (32 or 64) bits [1]. However, when those numbers 
become larger in size then the time for performing arithmetic 
operations, such as addition, subtraction, multiplication and 
division increases. This issue happens due to a number of 
different constraints related to the architecture of hardware and 
programming language. Because the majority of nowadays 
CPU registers are 32 or 64 bits, they can only accommodate 
numbers of that length [2]. Additionally, data types in 
programming languages are kind of a culprit, for instance, in 
the foremost programming languages, data of an integer can 
hold up to 32 bits, and a long data integer can hold up to 64 
bits. Many algorithms and methods have been developed 
directing to solve this problematic of arithmetic calculations on 
big numbers; though, all of them implement the same 
principles: first they convert big numbers from base 10 to base 
2, after that they execute bit-wise operations on the bit level [3, 
4]. For example, arithmetic addition can be performed using 
the bit-wise logical operators XOR and OR. Those algorithms 

have complexity of O(n), where n represents the total number 
of bits composing each of the big operands. 

In this paper, we propose an AI model trained on a set of 
numbers from a range 1 to 8 digits long with its corresponding 
targets to predict an accurate result of a specific mathematical 
computation. The aim behind this model is to reduce the 
execution and time complexity on CPU. 

II. RELATED WORKS 

Many programming libraries have been developed to solve 
one of the most common problems which is performing 
arithmetic computations on big-integer numbers. Moreover, 
most of these libraries are not designed to work in a parallel 
fashion but are to operate over single-core systems [5, 6, 7]. 
Most of the researches and publications have been done to 
provide a clarification for arithmetic addition on enormous 
integer numbers tackle the problem not from a software 
algorithmic perspective but from a hardware perspective. For 
example, Fagin [8] suggested an enhancement for the carry 
look ahead adder. His idea revolves around the use of a 
massively parallel computer with a big number of processors 
that reaches thousands, each processor has a connection with 
local memory and also has a communication network. In order 
to distribute integers to be added between processors, some 
techniques of parallel prefix are take on to quickly do addition 
of large numbers in faster than if conventional machines were 
in place. Avizienis [9] drafted a representation diagram for 
binary numbers used in fast parallel calculation. This diagram 
turns around replicating each input operands so as to get rid of 
the chain carry propagation during an arithmetic addition and 
subtraction [10, 11]. 

This paper is organized as follows. Section 1 is an 
introduction of how computer systems handle arithmetic 
operations and then a snapshot of our AI approach. Section 2 is 
about previous works have been done related to the 
development of different algorithms that were suggested to 
improve the performance of CPU handling arithmetic 
calculations. Section 3 tackles our first approach of performing 
mathematical calculations which is through a node iteration 
technique, an example of addition has been described with it’s 
schema. Section 4 drafts the limitation of the provided 
approach and the reason behind it. Section 5 explains briefly 
our second approach which is performing arithmetic 
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calculations through an AI pre trained model that can partially 
enhance CPU performance in handling some repetitive 
arithmetic tasks such as addition in particular. An example of 
addition has been provided with the structure of the model 
dataset is also described in details, plus a comparison in 
execution time of performing an addition calculation has is 
mentioned between CPU and the pre trained model. One other 
thing this section has is an introduction of how neural networks 
works with some information of how our model was created. 
Section 6 shares the execution time results of a conducted 
experiment of an addition operation for both CPU and our AI 
pre trained model, it shows the difference between them in 
terms of timing and the reason of getting such results. Section 7 
drafts some limitations of our proposed AI approach. Finally, 
Section 8 presents our conclusion and future works.  

III. NODE ITERATION APPROACH 

In this approach, we will generate a directional graph of 
operands and results as nodes of the graph and edges for 
directions. For the next operations we will iterate the generated 
graph to find the result, at first if we find the result we will 
return it and if not then it means that we didn't calculate such 
an operation before, o we need to do the operation in tradition 
way and store the operands and results as new nodes in the 
graph with specified directed edges for next usage. We will 
store the graph in a shared mid extra memory with high access 
speed to be useful for all threads. In this approach, the learned 
and generated graph will be shared with other computer 
resources. We need to find the most efficient algorithm to 
iterate the generated graph with minimal time. In this approach, 
each graph has two list of pointers a list of directed operation 
and a list for result pointers. Let us do the operation for 
2+2+1+542+543+6 (Fig. 1). 

 

Fig. 1. Example schema 1 

In this example we find the first operation node in the graph 
which is 2. After that we find a pointer pointing to the second 
operation as it is node 1. And from the second operand node 

we find a result pointer which is specified to the node 2 result 
which is node 3. And in this way, we can find the result of 2+1 
= 3 by graph iteration. 

We can illustrate our approach as below (Fig. 2, 3). 

 

Fig. 2. Class diagram 

1: template <typename T> 

2: bool Contains(std::vector<T> &Vec, int &number){ 

3: bool found = false; 

4: std::find_if(Vec.rbegin(), Vec.rend(),  

5:  [number, &found](const T &n) -> bool { 

6:   found = (((Node)n).getValue() == number); 

7:   return found; }) 

8: return found; } 

 

9: template <typename T> 

10: bool Contains(std::vector<T> &Vec, int &number){ 

11: bool found = false; 

12: std::find_if(Vec.rbegin(), Vec.rend(),    

13:  [number, &found](const T &n) -> bool { 

14:   found = (((Node)n).getValue() == number); 

15:   return found; }) 

16: return found; } 

Fig. 3. Hash table code implemented in C++ 

IV. LIMITATIONS 

In the traditional way of calculation, we have just two 
memory access and because of this reason we can obtain the 
result much faster. In our approach we have slower results 
because we need some other memory accesses. So, if we want 
to implement such approach in reality we need to store our 
graph in a much faster memory with higher speed of access to 
get the desired result. And calculating the time needs some 
time in this example and memory access time also is variable in 
any system. 

So, average memory access time = miss rate0 + hit time0 * 
(miss rate1* miss penalty1+ hit time1) 
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Fig. 4. Current computation process between CPU and Memory 

ResultTime=Result time – (memory access time * number 
of new accesses). this approach is not going to be useful for 
single operation calculation but also for any other complex 
operations to avoid repeated calculations. 

V. THE PROPOSED AI APPROACH 

As we know artificial neural network and deep learning 
models, are considered among the most powerful prediction 
tools that machine learning can offer, they are suited to solve 
perceptual problems. Artificial intelligence (AI) is very good 
also at handling some repetitive tasks. For example in a 
workplace AI will help hiring managers and recruiters to better 
match potential candidates for jobs. Based on this principle we 
found to use AI not to help human as a goal in this paper but to 
help the computer itself particularly CPU with preforming 
some repetitive tasks such as some frequent arithmetic 
calculations specially when it’s getting done on big numbers. 
In this paper, we focused on the addition arithmetic and how to 
use machine learning to best help CPU with performing 
repetitive summations.  

Taking an example the CPU can easily compute addition of 
two numbers, for instance, 17 + 54 in a matter of nanoseconds, 
while computing a bigger number with another big number e.g. 
1697458765 + 2536844568 is definitely heavier on CPU and 
will take longer time to execute. With the development of deep 
learning, we see that there have been a big success for such 
kinds of problems. In this paper, and for the sake of easy 
understanding and simplicity, we attempted to train a neural 
network on a simple arithmetic addition, the addition of two 
numbers and then we tried to predict the value answer through 
our trained model. The structure of the dataset consisted of two 
inputs and one output. The model has been trained on 1 million 
entries of integer type with its corresponding target outputs 
starting from zero incrementing to one million, and it was 
tested to provide accurate results on integer numbers ranging 
from 1 million to 10 million regardless to the trained set itself. 
The result is that we created a model that is able to accurately 

predict the addition of two integer numbers ranging from zero 
to ten million that is ready to save the CPU from performing 
addition calculations within this range, especially when CPU is 
in need to do a huge amount of tasks of such kind repeatedly. 
One interesting fact we have noticed was that after testing the 
execution time of CPU for performing a summation of two 
small integers was slightly more than the time our trained 
model took to predict the summation of the same numbers see 
(Fig.7). Nevertheless, the main goal is not to compete with 
CPU abilities but to assist it to perform faster.  

 

Fig. 5. Neural network 

As we can see in (Fig. 5) it’s basically the simplest neural 
network there is, a perceptron, with no hidden layers and the 
identity function f(x) = x as activation function. It’s really just 
linear regression in disguise. As long as you pass in empty 
values as 0, this network can learn how to add an arbitrary 
number of values up to N by finding a weight vector W of 
length N containing all 1s which we used for an experiment the 
addition of two digits. Of course, more complex networks 
could learn other arithmetic operations as well, but linear 
regression is already overkill for this task. Keras library has 
been used for creating the model which is a part of Tensorflow 
library see (Fig. 6). 

After training the model on 1 million input data we have 
tried to measure the execution time that both CPU and the 
model is taking to perform one calculation by testing it on a 
calculation of a single addition of two integer numbers. The 
test was done using timeit library in Python programming 
language, it was executed in windows 10 MSI notebook, core 
i7-8750H 8th Gen 2.2GH (12 CPUs), 16 GB Ram, As we can 
see in the result table (Fig. 7) the time that the CPU took to 
perform that calculation was longer by 10 nano-seconds 
compare to our AI trained model execution time. We believe 
the reason of getting such results is related to the method that 
CPU is using to perform an addition operation which is 
different and more complex from our neural network method. 
Both CPU and neural network methods have been explained in 
this paper already. 
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1: from tensorflow import keras 

2: import numpy as np 

3: import dataset as dc 

4: model = keras.Sequential([ 

5:  keras.layers.Flatten(input_shape=(2,)), 

7:  keras.layers.Dense(25, activation='relu'), 

8:  keras.layers.Dense(25, activation='relu'), 

9:  keras.layers.Dense(25, activation='relu'), 

10  keras.layers.Dense(1)]) 

11: 

model.compile(optimizer='adam',loss='mse',metrics=['mae']) 

12: model.fit(dc.train_data, dc.train_targets, epochs=20, 

13:batch_size=1) 

14: setupcode = "s = 0" 

15: function = '''a = 13+56 ''' 

17: print ("CPU execution time of two digits addition = 

18:",(timeit.timeit(setup = setupcode, number = 100))) 

19: setupcode1 = "r = 0" 

20: function = '''b = model.predict(np.array([[13,56]])''' 

21: print ("AI pre-trainded model execution time of two digits 

22:addition = ",(timeit.timeit(setup = setupcode1, number = 

23:100))) 

Fig. 6. Hash table code implemented in Python 

VI. EXPERIMENTAL RESULTS 

Test Case Operation Results Execution Time in 

Nano-Seconds 

CPU A+B Y 1.30 ns 

AI pre-
trained 

model 

A+B Y 1.10 ns 

 

Fig. 7. Result table 

VII. LIMITATIONS 

The model needs to be accurately and specifically trained, 
it also requires big amounts of structured training data and 
learning have to be generally supervised. Also it require 
offline batch data for training. Plus it cannot learn effectively 
in real time. 

VIII. CONCLUSION AND FUTURE WORKS 

The discussed approach of node iteration of graph data, 
were examined in practice. We see that our approach has some 
limitations. Based on our first experiment see (Fig. 3) we can 
state that the increase above this threshold does not result in 
faster processing. This phenomenon was caused due to the 
necessity of more data exchange that are extensive in case of a 
big numbers of parallel machines. And the second approach as 
we can see in the experiment there is a difference in time 

between CPU execution and AI pre-trained model by 
approximately 20 nanoseconds which gave a faster 
performance, we conclude this paper by stating that involving 
artificial intelligence in arithmetic operation is still evolving 
and this project might be a step towards improving such 
interaction. 

Future research can improve upon our proposed 
approaches by combining them together so that other 
arithmetic operations such as subtraction, multiplication, and 
division are added. Besides, a disseminated version of the 
same approach could be designed so that it can be 
implemented over a network of regular machines, making the 
execution less expensive and more accessible, also we will 
target to develop our model to learn in real time. 
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