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Abstract—Conventional computer modeling and 

visualization of plant tissues and cells are aimed at establishing 

corresponding static simulation models. In exploring the 

morphological evolution of cells in a microenvironment, 

interdisciplinary approaches need to be adopted to solve the 

underlying issues of dynamic modeling of cellular evolution. 

This study employs the reaction-diffusion equation to simulate 

the chemical signals driving cell growth. The Lattice 

Boltzmann Method (LBM) is used to obtain the expression for 

the incompressible fluid surrounding the cells, and the 

Immersed Boundary Method (IBM) is employed to simulate 

the cytoskeleton–flow field interaction. The visualized 

simulation of the interaction between the cell morphology and 

flow field is eventually realized using C++ and OpenGL 2.2. 

Experimental results suggest that the morphological evolution 

of plant cells can be realized by adjusting the fluid control 

parameters of the microenvironment, simultaneously proving 

the applicability of the proposed method as a computing mode 

for research in plant cell morphologies.  

Keywords—plant cells, Lattice Boltzmann Method, Immersed 
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I. INTRODUCTION  

British biologist Thompson first published “On Growth 
and Form” in 1917, which is considered as the first critical 
moment for modeling the formation and development of 
organisms aided by mathematical knowledge [1]. In this 
work, Thompson expounded the shape, and scale of animals 
and plants as well as the surface tension of the membrane 
structure (such as cells) similar to soap, and demonstrated the 
geometrical shape of animal skulls on the Cartesian grid by 
means of the “Thompson conversion method”. The 
conversion method is performed without considering the 
formation and differentiation of new organs, although it is 
related to initial and mature stages of organism development 
[2]. The restriction remained unsolved until the end of the 
1960s. In 1968, Hungarian biologist Aristid Lindenmayer 
developed a set of formal languages to simulate the 
behaviours of plant cells. The language, also known as L-
systems [3], is similar to Chomsky’s production language, 
which is to establish a mathematical model of cell interaction 
at the cellular level using straight lines and branch structures 
to describe the morphogenesis of organisms. The computer 
model based on L-systems was not applied to the study on 

the development morphology of plant organs until the mid-
70s. At that time, a computer model was developed for the 
relationship between plant development local organization 
and overall morphology and its information transfer [4]. 

The brief history of morphogenesis of organisms with 
geometric description was introduced above. Besides, there is 
another type of model that is established on the basis of the 
reaction-diffusion theory. To be specific, the model is 
adopted to represent the reaction-diffusion process of 
chemical substances from initial uniform and stable 
distribution state to the spontaneous formation from high 
concentration to low concentration. The theory was proposed 
in 1952 by the famous British computer scientist Alan 
Mathison Turing who attempted to explain the 
morphogenesis of natural organisms through establishing a 
series of reaction-diffusion differential equations [5]. 
Besides, Gernher and Mainhardt used short-distance 
activation and long-distance inhibition to recognize 
concentrations of the activator, and the inhibitor as well as 
the source density based on the “reaction-diffusion” theory. 
Specifically, when the source density is changed slowly, 
patterns are formed rapidly by concentrations of the activator 
and the inhibitor [6]. Moreover, Liao et al. obtained the 
equation exclusive for leopard markings using the reaction 
diffusion theory and experimentally demonstrated that 
markings of leopard in the development stage can be 
displayed through changing the parameters in the equation 
and computer calculation [7]. 

Cell morphology and quantity directly contributes to the 
composition of plant leaves, while the mechanical force that 
is primarily produced by the reaction-convection-diffusion of 
substances inside and outside the cell is a major cause for its 
morphogenesis [8][9]. On this basis, the evolution of cell 
morphology is modeled to provide a mathematical 
explanation for describing cell growth via computer from the 
physical-chemical perspective. 

II. METHODS 

The cell evolution process is decomposed into a structure 
consisting of chemical level, physical layer and geometric 
representation due to its complexity, as shown in Fig. 1. 
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Fig. 1. Physical-chemical interactions in cell morphological evolution 

modeling 

A. Key technologies at the chemical level. The reaction-
diffusion differential equation is simulated at the chemical 
level using biological signals of cell growth in the chemical 
layer. Its vector form is shown in Eq. 1. Moreover, the 
solution is conducted in a Cartesian grid or Euler grid 
resorting to the D2Q5 model of the lattice Boltzmann 
method [10]. 
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where, T is the time; 2  is the Laplace operator related to 

the specific space X ; M  is the species number of substance; 

( , )s X T  is the mass density of the substance s  at the time 

T  and the location X ; sD  is the diffusion coefficient; and 

sR  is a reaction term that is dependent of the density of the 

reaction of s  and s  with other substances. 

B. Key technologies at the physical level. In this paper, 
the movements of flow field of the cell wall and its 
boundary were simulated with the help of the immersed 
boundary in accordance with the basic idea of converting the 
boundary into a body force in the Navier-Stokes viscous 
Newtonian fluid equation [11]. Assuming that the fluid in 
the physical layer is incompressible and viscous with 
consistent viscosity inside and outside the cell, its two-
dimensional Navier–Stokes equation is presented in Eq. 2. 
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where,   is the constant fluid density;   is the 

hydrodynamic coefficient of viscosity; u  is the fluid 

velocity; p  is the fluid pressure; F  incorporates all the 

body force transmitted from the cell wall boundary to u . 

And F  is defined in Eq. 3. 

( , ) ( , , ) ( ( , , )) ( ( , , ))F x t f q s t x X q s t y X q s t ds      (3) 

where, ( , , )f q s t  is the unit force resulted from the 

immersed boundary; ( , , )X q s t  is the boundary coordinates 

at t  time; and   is the Delta Dirac function. The solving 

process is performed in the same way as the chemical level, 
that is, the force F  is mapped to the Cartesian grid using the 
D2Q9 model of the lattice Boltzmann method. 

C. Key technologies at geometric representation. The 
vertex coordinate of the original shape of the cell is 
calculated using the immersed boundary method. To begin 
with, the body force is calculated based on mechanical 
equations together with the vertex position at the boundary 
of the cell shape. Then, forces at the node of surrounding 

fluids are deduced from the body force. After that, the flow 
control equation is solved as per the force at the grid node of 
the fluid field. Finally, the new coordinates for the vertex of 
the cell shape can be obtained with the adoption of new 
velocity field distribution. 

III. EXPERIMENT AND DISCUSSION 

I5-8300H 2.30GHz CPU, and 16.0G memory were 
configured to the computer hardware in the experimental 
environment together with a 64-bit Windows 10 operating 
system, C++ programming language and OpenGL 2.2 
graphics library. Meanwhile, the geometric boundary of a 
plant cell was fitted using a hexagon, and the flow field falls 
into a grid of 30×30 nodes. Concerning initialization 
parameters, relaxation time was set to 1; the force density 
resulted from gravity is 0; the velocity at the bottom wall of 
the flow field was -0.02; the velocity at the top wall was 
0.02; the grid fluid viscosity   was 0.1667, and the fluid 

Reynolds number Re was 0. Note that all units were 
dimensionless. When t =200, t =400, t =800, and t =1200 

iterations, the cell visualization shapes are presented 
respectively in Fig. 2. 
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Fig. 2. Visualization of plant cell model when t=200,400,800,1200 

iterations. 

Evidently, the fluid velocity is changed with the changed 
density of surrounding fluid, leading to variations in spots on 
the plant cell. The experimental results simulate the 
occurrence of morphological changes of cells under the 
effects of intracellular and extracellular spaces, achieving the 
diffusion and fluid effect of plant cell as well as the dynamic 
process of geometric representation. 

IV. CONCLUSION 

A physical-chemical modeling method is proposed to 
analyze and simulate the evolution of cell morphology, 
which can prevent from modeling and analysis of complex 
and temporarily unclear gene regulatory networks. In this 
study, one method is proposed to simulate the evolution of 
the two-dimensional visualization geometric model of plant 
cells in the flow field. What’s more, a layered calculation 
approach is adopted in the proposed method, which can 
easily extend the problems that plant cells are not merely a 
three-dimensional structure, and the interaction between cells 
is not considered due to the effect of cell wall between cells. 
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