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Abstract—The current National Structural Code of the 

Philippines (NSCP) has been revised to address seismic 

excitation in building design. However, previous research 

demonstrates that strict adherence to the code may not provide 

adequate structural damage protection. To design resilient 

structures, it is necessary to consider the non-linear behavior of 

materials. However, the computational requirements of 

nonlinear time history analysis present a significant challenge. 

Despite efforts to revise the National Structural Code of the 

Philippines (NSCP) to address seismic excitation in building 

design, previous research shows that this may not provide 

sufficient structural damage protection. To address this 

challenge, this study presents a machine learning approach to 

predict the inelastic seismic response of reinforced concrete 

(RC) buildings in the Philippines through the implementation 

of an artificial neural network model. The study involved the 

development of 900 building models, which were subjected to 

both linear analyses using the equivalent lateral force (ELF) 

procedure and non-linear time history analysis (NLTHA). The 

resulting dataset was used to train an Artificial Neural 

Network (ANN) model to predict the maximum inter-story 

drift ratio (MIDR) and serve as the primary engineering 

demand parameter (EDP) to evaluate the damage and 

performance levels. A web-based application was also 

developed, leveraging the ANN model as the computational 

basis. 
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I. INTRODUCTION 

The Philippines is a country situated in the Pacific Ring 
of Fire where about 90 percent of all seismic activities in the 
world happens [1]. Because of this, the country experiences a 
lot of earthquakes resulting in significant damage to 
buildings [2]–[4]. The National Structural Code of the 
Philippines (NSCP) received multiple critical updates to 
address the design of buildings experiencing severe seismic 
excitation [5]. But several studies have shown that following 
the code provisions, although safe against collapse, may not 
protect the structure against structural damage [4], [6], [7]. 

Reinforced concrete (RC) is one of the most used 
building materials in the country. Following initiatives in 
sustainable construction [8], structural engineers are tasked to 
design RC structures with specified levels of performance 
[5], [9]–[12] when subjected to such hazards. Calculating the 
non-linear or inelastic response (e.g., inelastic displacements) 
of a building is a must to predict the amount of damage that a 
structure can withstand. In the calculation of the inelastic 
response, non-linear time history analysis (NLTHA) is often 
used. But such a calculation technique is computationally 
cumbersome and needs computers with fast computational 
capabilities. A faster method of analysis is needed to mitigate 
delays in the engineering process.  

This study follows the development of a deep feed-
forward artificial neural network (ANN) model to predict the 
inelastic seismic response of RC buildings. ANNs have been 
applied to numerous engineering problems [13], [14]. A web-
based software application utilizing the ANN model was 
developed to assess the damage and performance level of 
buildings. 

II. METHODOLOGY 

A. Definition of Model Parameters 

30 sets of structural parameters, together with 30 sets of 
seismic parameters were randomly generated from a typical 
range of values. A total of 900 building models will be 
generated for structural analysis. 

The structure parameters considered in this study are 
number of spans in both directions, number of stories, span 
lengths, story height, ground floor height to typical story 
height ratio, concrete strength, main reinforcement strength, 
confinement strength, floor superimposed dead and live 
loads, roof dead and live loads, wall thickness, column steel 
ratio, beam steel ratio, confinement ratio for columns, and 
confinement ratio for beams. Also, derived parameters such 
as concrete elastic modulus, shear modulus, total building 
height, typical floor area, and approximate story stiffness 
were considered in the study. 

The seismic parameters are seismic source type, seismic 
source distance, soil profile type, and seismic zones. Seven 

randomly selected earthquake ground motions [5], [9] are 

extracted from the PEER NGA-West2 strong ground motion 
database [15] for each set of data and spectrally matched to 
the design spectra using a wavelet transform algorithm [16]. 

The structural models are built using OpenSees [17] and 
the OpenSeesPy library [18]. The models were fully fixed to 
the ground and the effects of infill walls neglected. Only the 
frame members (columns and beams) were considered as 
members of the lateral force-resisting system (LFRS). 

B. Structural Analysis of Building Models 

Structural analysis was conducted to identify both the 
linear behavior and the non-linear behavior of the sample 
buildings. The code-based procedure (CBP) for the inelastic 
response is: 

ΔM = 0.7RΔS   (1) 

where ΔM is the maximum inelastic displacement, R is the 
response modification factor and ΔS is the linear 
displacement [5], [9]. The linear behavior was analyzed using 
the equivalent lateral force (ELF) procedure. The seismic 
response in both directions were combined using the square 
root sum-of-squares (SRSS). The inelastic response of the 
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models was determined by adopting a distributed plasticity 
model with five integration points. Fiber elements [19], [20] 
were used to set the non-linear properties of the sections. The 
material constitutive models were based on [21], [22] and 
[23]. The matched ground motions were applied in the two 
primary directions as transient loads. The average response 
from seven different ground motion [5], [9] time histories 
was recorded. The maximum inter-story drift ratio (MIDR) 
was calculated for each model and served as the main 
engineering demand parameter (EDP) to identify the 
performance and damage levels (Table I) [10]. 

TABLE I.  MIDR VS DAMAGE AND PERFORMANCE LEVELS 

MIDR, % Damage Level Performance Level 

< 0.2 Negligible Fully Operational 

0.2 to 0.5 Light Operational 

0.5 to 1.5 Moderate Life Safety 

1.5 to 2.5 Severe Near Collapse 

> 2.5 Complete Collapse 

C. Development of Artificial Neural Network Model 

The hyperparameters like network topology (number of 
hidden networks and number of neurons), activation 
functions [24], and training algorithms [25]–[27] were 
varied. The hyperparameters were optimized using the 
Hyperband search algorithm [28] using the mean squared 
error (MSE) as its scoring criteria [29]. 

Feature analysis [30] were employed to reduce the 
number of features. The outliers for the MIDR are removed, 
then transformed or scaled to get a normal distribution. 
Redundant features based on a 90% correlation were 
eliminated and wrapper method of feature elimination [31] 
was done to select the best features. One-hot encoding was 
used for the categorical features. The processed data was 
randomly assigned into three groups: 70% for training, 15% 
for validation, and 15% was reserved for evaluation. The 
permutation importance algorithm [32] was then utilized to 
rank the contribution of each input feature. 

D. Evaluation of the Model 

Using the evaluation data set, the best ANN model 
identified from the hyperband search was compared with the 
CBP. The correlation coefficient of both methods with the 
results of the NLTHA was compared. 

E. Software Application Development 

A static web-based application was programmed 
comprised of different input boxes for the different structural 
parameters and seismic parameters. The ANN model was 
used for the calculation of the predicted MIDR together with 
the performance level of the building. 

III. RESULTS AND DISCUSSION 

The main objective of this study is to develop a tool 
utilizing an artificial neural network model that will predict 
the structural damage on RC buildings expressed via the 
MIDR. 

RC Building Models 

900 different building models were produced. The 
generic geometry of the models is shown in Fig. 1. The 
natural periods of the models are shown in Fig 2. The 
distribution of fundamental periods indicates that the models 
have good variation. A wide variation is necessary for the 
ANN model to be representative of structures within the 
range of parameters considered. 

A. Structural Response 

Each model was analyzed and the MIDR computed 
(Table II). The outliers from this MIDR data were eliminated 
resulting in 854 rows of data remaining. The minimum 
MIDR is 0.03% and the maximum is 3.86%. The mean 
MIDR is 0.75% with a standard deviation of 0.73%. 

 

Fig. 1. Generic building model. The building models adopted in this study 

are of regular structure with equal spans and only accidental 

eccentricities considered 

 

Fig. 2. Distribution of calculated natural periods for the building models 

TABLE II.  LINEAR AND NON-LINEAR MIDR RESULTS 

Response Min Max Mean SD 

Linear MIDR 0.02 0.89 0.18 0.12 

Non-Linear 

MIDR 

0.03 3.86 0.75 0.73 

B. Best ANN Model Parameter 

After feature analysis, the set of best features include 
story stiffness, column and beam steel ratios, floor area, roof 
live load, concrete compressive strength, building height, 
seismic source distance, seismic source type, soil profile, and 
seismic zone. 

The Hyperband search yielded the following results as 
shown in Table III. The best ANN model topology is shown 
in Fig. 3. 
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TABLE III.  RESULTS OF THE HYPERBAND SEARCH FOR 

HYPERPARAMETER OPTIMIZATION 

Hyperparameter Best 

Model 

2nd Best 

Model 

3rd Best 

Model 

No. of Hidden Layers 8 4 3 

No. of Neurons per Hidden 

Layer 

90 90 50 

 100 30 10 

 50 60 90 

 20 80 - 

 50 - - 

 20 - - 

 10 - - 

 60 - - 

Activation Function ReLU ReLU Sigmoid 

Optimizer Algorithm Adam RMSProp Adam 

MSE 0.0295 0.0355 0.0371 

Epochs 23 22 59 

 

 

Fig. 3. Network topology schematic of the best ANN model. The number 

of neurons in the input layer and each hidden layer shown represents 

ten units 

 

Fig. 4. Permutation feature importance scores 

The models utilizing the ReLU activation function (best 
and 2

nd
 best models) converged faster than the 3rd best model 

which uses a sigmoid activation function. This is expected 
since the ReLU was developed as an improvement to logistic 
type activation functions like the sigmoid and tanh functions. 

The input features were ranked based on permutation 
importance algorithm. From Fig. 4, the most important 
features are the story stiffness, column steel ratio 
(column_rho), and typical floor area.  

C. ANN Model vs CBP 

It can be seen in Fig. 5 that the scatter of the ANN model 
is less than the CBP, especially in the lower drift range. 
However, the scatter of the results is higher in the larger drift 
range for both procedures. The correlation coefficients are 
95.31% for ANN and 76.88% for code-based results. 

D. Software Application 

A custom software application was developed and 
deployed at https://sdpann.engrleir.com/. Sample calculation 
results are shown in Fig. 6. 

 

Fig. 5. Evaluation data from NLTHA vs Predicted MIDR of the ANN and 

CBP. The scatter plot shows a correlation of 95.31% for the ANN 

while 76.88% for the CBP 

 

Fig. 6. Sample results of the software application 

IV. CONCLUSIONS AND RECOMMENDATIONS 

The ANN model showed a better performance than CBP. 
A web-based software application was developed to 
implement the model, which serves as a tool in predicting the 
MIDR, damage, and performance level of RC buildings 
during earthquakes. Additionally, it is recommended to 
consider the effects of masonry walls, other types of LFRS, 
higher mass eccentricities, other material constitutive models, 
and soil-structure interaction in future studies. Overall, this 
study provides a foundation for future research on utilizing 
ANNs to improve the understanding of structure response. 
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