Исследование диаграммы направленности антенной решетки с частотным разнесением

В. Ю. Волков, Вьет Ан Нгуен

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

vl_volk@mail.ru

Аннотация. Исследуются процессы преобразования сигналов и свойства диаграммы направленности в антенной решетке с частотным разнесением. Рассмотрено применение симметричного частотного плана. включающего возрастающий и убывающий варианты изменения частоты по элементам для улучшения направленности. Проведен анализ диаграммы симметричных логарифмического и синусоидального планов для уменьшения влияния периодичности главных лепестков при локализации целей.

Ключевые слова: диаграмма направленности, частотное разнесение, нелинейный частотный план, фокусировка и слежение, согласованная фильтрация

I. Введение

Частотное разнесение элементов антенных решеток (FDA – frequency diversity array) является перспективным средством улучшения характеристик систем связи и радаров, обеспечения высокой точности и разрешающей способности, особенно в условиях воздействия помех, распределенных по дальности. По сравнению с обычными ФАР многочастотные решетки позволяют осуществлять сканирование пространства без применения фазовращателей, и обеспечивают гибкое управление лучом [1, 2].

В обычной схеме эквидистантных антенных элементов каждый из них излучает разные частоты, и частоты соседних элементов отличались на одинаковую величину Δf (FO – ffrequency offset), так что было реализовано линейное увеличение частоты от одного элемента к другому. Такая схема линейного частотного плана подробно изучена в [2]. Было замечено, что фазовые сдвиги между разнесенными антенными элементами претерпевают изменения в зависимости от дальности, а не только от углового направления, и, таким образом, диаграмма направленности оказывается периодически зависящей от угла, времени и дальности [1].

На характеристики радара с несколькими несущими влияют модуляция излучаемого сигнала и тип обработки. Для получения требуемого распределения поля и управления лучом необходимо понять влияние каждого из факторов, участвующих в формировании луча, а также влияние алгоритма обработки принятых сигналов. В статье исследуются преобразования сигналов антенной решетки с частотным разнесением при использовании согласованных фильтров в сравнении со свойствами сформированной диаграммы направленности. Рассматриваются варианты симметричных линейных и нелинейных изменений частот по элементам (частотных планов).

II. СИГНАЛЫ В МНОГОЧАСТОТНОЙ АНТЕННОЙ РЕШЕТКЕ

Рассмотрим *М*-элементную линейную передающую антенну, содержащую элементы с координатами d_m относительно первого элемента, так что $d_1 = 0$. Будем считать, что элементы антенны имеют идентичные и изотропные диаграммы направленности и их размеры малы по сравнению с длиной волны. Каждый передающий элемент излучает узкополосные сигналы $s_m(t) = u_m(t)\exp(j2\pi f_m t)$ с одинаковыми начальными фазами и частотами $f_m = f_0 + \Delta f_m$, m = 0, ..., M-1, где $u_m(t)$ – комплексные огибающие. Суммарный сигнал передающей антенны в точке дальней зоны на расстоянии R и под углом θ к нормали (направлению визирования) может быть (без учета амплитудного затухания) записан в виде

$$x(t, R, \theta) = \sum_{m=0}^{M-1} w_{t,m} u_m(t) \exp(j2\pi f_m(t - R_m/c)), \quad (1)$$

где $R_m = R - d_m \sin \theta$, а θ – угол относительно нормали к оси решетки (boresight direction), $w_{l,m}$ – комплексный весовой множитель передающего элемента. В отсутствии фокусировки и слежения в передатчике *w*_{*t,m*}=1. При одинаковой временной модуляции сигналов каждого элемента амплитудная диаграмма направленности (ДН) для передачи равна модулю суммарного сигнала x(t). По сравнению с фазированной антенной решеткой (ΦAP) ($\Delta f_m = 0$) оказывается, что ДН зависит от угла, времени и расстояния до точки. Предпринимались различные попытки устранить или ослабить эти зависимости и получить статические диаграммы направленности, необходимые для обнаружения и оценки координат целей [3, 4]. Насколько серьезен этот недостаток, зависит от возможностей фокусировки антенны.

Сигнал, отраженный от точечной цели и принимаемый *n*-м приемным элементов антенны имеет вид

$$y_n(t, R, \theta) = u(t - 2R/c) \sum_{m=0}^{M-1} \exp(j2\pi f_m(t - 2R/c) + j2\pi f_m(d_m + d_n)\theta/c), \text{ где } \theta = \sin\theta.$$
(2)

После фокусировки по дальности умножением на $\exp(j2\pi f_m 2R/c)$ в каждом передающем элементе получаем сигнал на входе n-го приемного элемента

$$y_n(t, \vartheta) = u(t) \sum_{m=0}^{M-1} \exp(j2\pi f_m t + j2\pi f_m (d_m + d_n)\vartheta/c).$$

Сумма сигналов по приемным элементам равна

$$Y(t, R, \mathcal{G}) = u(t) \sum_{m=0}^{M-1} w_{t,m} \exp(j2\pi f_m t) \sum_{n=0}^{N-1} w_{r,n} \exp(j2\pi f_m (d_m + d_n)\mathcal{G}/c) ,$$
(3)

где *w_{r,n}* – комплексные веса на приемном конце.

Двусторонняя амплитудная диаграмма направленности (ДН) определяется как модуль суммарного сигнала *Y*.

III. УПРАВЛЕНИЕ ДИАГРАММОЙ НАПРАВЛЕННОСТИ И ОБРАБОТКА СИГНАЛОВ

Для установки диаграммы на заданные дальность и угол (*R*₀, *α*) вводятся фазовые множители для передающих и приемных элементов

$$w_{t,m} = \exp(j2\pi f_m (R_0/c - d_m \sin \alpha/c)),$$

$$w_{r,n} = \exp(j2\pi f_n (R_0/c - d_n \sin \alpha/c)).$$

Такой метод реализует неадаптивное формирование ДН [4].

Согласованный фильтр для суммы сигналов Y(t,R,9)свертывает этот сигнал с импульсной характеристикой фильтра, которая является зеркальным отображением этого сигнала во времени, в результате на выходе формируется его функция автокорреляции для каждого значения диапазона и угла. Это оптимальная обработка, которая часто не разделяется на пространственную и временную. Во многих случаях она оказывается слишком сложной для реализации.

В практических реализациях в каждом приемном канале организован набор фильтров, настроенных на все используемые частоты [3-6]. Выходные данные фильтра суммируются с соответствующей регулировкой фазы. В отличие от согласованной фильтрации суммарного сигнала, в этой реализации приемник не полностью учитывает фазовые соотношения межлу суммированными сигналами, что может повлиять на качество обработки. Такой подход оправдан для систем MIMO (multiple-input-multiple output) [5], в которых применяются ортогональные сигналы, но он также может быть использован и в случае когерентных систем с частотным разнесением. Принимая во внимание узкую полосу пропускания сигналов, можно считать, что $\exp(j2\pi f_m d_n \vartheta/c) \approx \exp(j2\pi f_0 d_n \vartheta/c),$ тогда сигнал на входе *n*-го приемного элемента равен

$$y_n(t, \vartheta) \approx u(t) \exp(j2\pi f_0 d_n \vartheta/c) \sum_{m=0}^{M-1} \exp(j2\pi f_m t + j2\pi f_m d_m \vartheta/c) .$$

В результате фильтрация в каждом приемном канале может быть выполнена одинаковой [5,7] с использованием фильтра, согласованного с общим сигналом передатчика. Дальнейшее упрощение включает в себя только согласованную фильтрацию в каждом

канале приема с сигналом
$$s_0(t) = \sum_{m=0}^{M-1} \exp(j2\pi f_m t)$$
. В этом

случае фокусировка в каналах передачи не используется.

IV. МНОГОЧАСТОТНАЯ РЕШЕТКА С ЛИНЕЙНЫМ СИММЕТРИЧНЫМ ЧАСТОТНЫМ ПЛАНОМ

При расчете диаграмм направленности многочастотных антенн обычно используются фазовые соотношения, без учета временной природы сигналов, участвующих в их формировании. Влияние временных параметров учитывается путем введения временных задержек в фазовые компоненты [4, 7–9]. Более тонкий анализ связан с моделированием временных сигналов и процессов их преобразования.

Для детального анализа рассмотрим эквидистантную линейную решетку (ULA – uniform linear array) включающую М совмещенных приемо-передающих элементов, разделенных полуволновым интервалом d (collocated radar). Также примем линейный частотный план $f_m = f_0 + m\Delta f, m = 0, ..., M-1$. Здесь Δf – постоянный частотный сдвиг (frequency offset). Такой вариант соответствует «обычной» схеме с частотным разнесением (conventional FDA) [4]. Рассмотрим решетку с числом элементов M = 6 для следующих параметров: $f_0 = 2,5$ ГГц, $\Delta f = 40$ МГц, что соответствует линейновозрастающему частотному плану. Монохромные сигналы одинаковой амплитуды излучаются с одинаковыми начальными фазами достаточно длинными импульсами.

Пусть точечная цель находится в дальней зоне, так что фронт волны считается плоским. Отраженные сигналы суммируются в каждом приемнике, и их сумма является многочастотным колебанием. Форма такого колебания $\sin(Mx)/\sin(x)$ [3,5], где $x = \pi \Delta ft$. Рассмотрим случай отсутствия фокусировки по углу в передающих элементах. Фактически диаграмма направленности на передачу в начальный момент времени оказывается направленной по нормали к оси решетки ($\theta = 0$, boresight direction) и далее развивается по S-образной кривой (рис. 1*a*).

Как отмечено в [7-9], приведенные выше формулы справедливы не для всех значений времени t, а только в интервале $[t_1,t_2]$, где $t_1 = 2R/c$, $t_2 = 2R/c+T$. Поэтому картина, представленная на рис. 1, начинается не с нулевого отсчета времени, а с момента t_1 , и заканчивается в момент t_2 . Следовательно, время t по оси ординат на рисунке следует заменить на t' = t - 2R/c. В работе [8] указывается, что системам с FDA присуще

ДН, увеличивающееся смещение максимума с возрастанием частотного оффсета Δf , которое может существенно исказить форму диаграммы направленности. Аналогично этому, убывающий частотный план организуется при параметрах $f_0 = 3,2$ Ггц, $\Delta f = -40$ МГц, при этом диаграмма направленности на принимает осе-симметричный передачу вид по отношению к первой (рис. 1б). В этом случае также возникает смещение максимума ДН, но оно имеет противоположный знак.

Рис. 1. Динамика изменения диаграммы направленности на передачу по углу и времени для двух линейных частотных планов: а – линейно-возрастающий; б – линейно-убывающий. Время отсчитывается сверху-вниз.

Идея совмещения двух планов в целях лучшей локализации области пространства упоминается в [10] со ссылкой на [11]. При этом реализация может быть последовательной путем когерентного суммирования сигналов возрастающего и убывающего планов, либо одновременной в виде V-образной поэлементной кривой [12]. последнем случае для уменьшения В интерференции и боковых лепестков следует исключить повторение частот в одновременно излучающих элементах, для чего в ветвях кривой применяются разные частотные оффсеты $\Delta f_1 u \Delta f_2$ [13].

Рис. 1. Диаграмма направленности для симметричного линейного частотного плана: *а* – пики диаграммы; *б* – интенсивности

В статье рассматривается последовательный вариант реализации симметричных частотных планов. При использовании симметричных частотных планов достигается облучение всего пространства за счет движения диаграмм направленности (рис. 1), а концентрация энергии происходит в локальных пиках, которые могут перемещаться вследствие фокусировки и управления. Результирующая ДН на прием представлена на рис. 2, и отличается концентрацией энергии в периодически повторяющихся пиках.

V. МНОГОЧАСТОТНАЯ РЕШЕТКА С НЕЛИНЕЙНЫМИ СИММЕТРИЧНЫМИ ЧАСТОТНЫМИ ПЛАНАМИ

Недостатком линейного частотного плана для однородной линейной решетки является периодичность основных пиков по дальности и углу, что вызывает неоднозначность в определении координат целей. С этим явлением можно бороться путем изменения частотного плана, введя зависимость смещения частоты как от номера излучаемого антенного элемента, так и от времени, т. е. введя частотную модуляцию. Быстро стало ясно, что найти оптимальное решение невозможно, особенно для неэквидистантных решеток [6, 13]. Однако появились варианты, которые обеспечили существенное улучшение диаграмм направленности.

Логарифмический частотный план был впервые в [14] для увеличения смещений. исследован Существует способов использовать много логарифмический закон. Авторы [6] приводят формулы $\Delta f_m = -\Delta f \left(\ln(m) \right)^{1.5}$ убывающего для плана. Возрастающий вариант может быть получен как $\Delta f_m = \max(\Delta f_m) + \Delta f (\ln(m))^{1.5}$. Для M = 6 и $\Delta f = 40$ МГц это дает непересекающиеся кривые (рис. 3а). Ранее в [15] логарифмические смещения частот предлагались в $\Delta f_m = -\delta \Delta f \left(\ln(m) \right)$ более простой форме: лля возрастающего плана. Тогда для убывающего плана получаем $\Delta f_m = \max(\Delta f_m) + \delta \Delta f(\ln(m))$, и при $\delta = 2$ два плана перекрываются (рис. 3б).

Рис. 2. Логарифмические симметричные частотные планы: *а* – неперекрывающиеся; *б* - перекрывающиеся.

Синусоидальные симметричные частотные планы можно получить из [16]: $\Delta f_m = -9\Delta f \sin(m/38,8)$. Для M = 6 это приводит к неперекрывающимся линиям (рис. 4,*a*). Перекрывающаяся версия $\Delta f_m = 5.25 \Delta f \sin((m/38,8))$ показана на рис. 4,*б*.

Рис. 3. Синусоидальные симметричные частотные планы: *a* – неперекрывающиеся; *б* – перекрывающиеся

Результаты расчетов ДН с нелинейными симметричными частотными планами приведены на рис. 5 – рис. 9. На рис. 7 и рис. 9 представлены сечения ДН вдоль оси дальности в сравнении с линеным

частотным планом. Нелинейные частотные планы обеспечивают существенное уменьшение периодичности главных лепестков ДН. Синусоидальный симметричный частотный план с непересекающимися линиями показал наилучшие результаты с точки зрения малой периодичности главных лепестков ДН. Вариант пересекающихся кривых оказался значительно хуже.

VI. ЗАКЛЮЧЕНИЕ

Антенны FDA обладают ценным свойством самосканирования пространства, однако периодичность диаграммы направленности по углу и дальности действия обычных FDA с линейным частотным планом и взаимосвязь этих параметров затрудняют однозначную локализацию цели. Большая стабильность и разделение угла и дальности могут быть достигнуты за счет фокусировки и управления элементами матрицы, а также пространственно-временной обработки сигнала.

Согласованная фильтрация позволяет стабилизировать результирующее значение ДН по дальности, что не достигается при многоканальной фильтрации с последующим суммированием по приемным элементам.

Рис. 4. Диаграммы направленности на прием для симметричных неперекрывающихся логарифмических частотных планов: *а* – интенсивность; *б* – пики

Рис. 5. Диаграммы направленности на прием для симметричных перекрывающихся логарифмических частотных планов: *a* – интенсивность; *б* – пики

Рис. 6. Сечения диаграмм направленности по дальности при $\alpha = 0^{\circ}$ в случае логарифмических частотных планов: a — для неперекрывающихся планов; δ — для перекрывающихся планов

Рис. 7. Диаграммы направленности на прием для симметричных неперекрывающихся синусоидальных частотных планов: *а* – интенсивность; *б* – пики

Рис. 8. Сечения диаграмм направленности по дальности при α = 0° в случае синусоидальных частотных планов: *a* – для неперекрывающихся планов; *б* – для перекрывающихся планов

Использование нелинейных частотных планов позволяет значительно уменьшить влияние пиков неоднозначности ДН при использовании длинных импульсов, обеспечить лучшую локализацию цели, при этом непересекающиеся варианты оказались более эффективными.

Список литературы

- P. Antonik, M.C. Wicks, H.D. Griffiths, and C.J. Baker, "Frequency diverse array radars," in Proc. IEEE Radar Conf., Verona, NY, USA, pp. 215–217, Apr. 2006.
- [2] P. Antonik, An Investigation of a Frequency Diverse Array. PhD thesis. University College London. 2009.
- [3] W. Jia, A. Jakobsson, W.-Q. Wang, "Coherent FDA Receiver and Joint Range-Space-Time Processing," eess.SP, arXiv: 2306.00688v, 2023.
- [4] W.-Q. Wang, H. Shao, J. Cai, "Range-Angle-Dependent Beamforming by Frequency Diverse Array Antenna. "International Journal of Antennas and Propagation," vol. 2012. Article ID 760489, 2012.
- [5] Y. Dong, "Frequency diverse array radar signal and data processing," IET Radar Sonar Navig, vol. 12(9), pp. 954-963, 2018.
- [6] Y. Xu, X. Huang, A. Wang, "Transmit-Receive Sparse Synthesis of Linear Frequency Diverse Array in Range-Angle Space Using Genetic Algorithm," Sensors, vol. 23(6), pp. 3107, 2023
- [7] W. Jia, W.-Q. Wang, Sh. Zhang, Zh. Zheng, "FDA beampattern characteristics with considering time-range relations," arXiv: 2204.07256v1, 14 Apr, 2022.
- [8] R. Gui, W.-Q. Wang, C. Cui, H. C. So, "Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis," IEEE Trans. on Signal Proc., vol. 66(1), pp. 200–214, 2018.
- [9] M. Tan, Ch. Wang, Zh. Li, "Correction analysis of frequency diverse array radar about time," IEEE Transactions on Antennas and Propagation, vol. 69(2), pp. 834 – 847, 2021.
- [10] W.-Q. Wang, "Overview of frequency diverse array in radar and navigation applications," IET Radar Sonar Navig., vol. 10(6) pp. 1001–1012, 2016.
- [11] P. Sammartino, C. Baker, H. Griffiths, "Frequency diverse MIMO techniques for radar," IEEE Trans. Aerosp. Electron. Syst., vol. 49(1) pp. 201–222, 2013.

- [12] Sh. Nusenu, "Transmit/Received Beamforming for Frequency Diverse Array with symmetrical frequency offsets," Adv. Sci. Technol. Eng. Syst. J, vol. 2(3) pp. 1-6, 2017.
- [13] Sh. L. Wang, Zh. Xu, X. Liu, W. Dong, G. Wang. "A Novel Transmit–Receive System of Frequency Diverse Array Radar for Multitarget Localization," Electronics, vol.7, 408, 2018.
- [14] W. Khan, I. M. Qureshi, S. Saeed, "Frequency diverse array radar with logarithmically increasing frequency offset," IEEE Antennas Wireless Propag. Lett., vol. 14(1), pp. 499–502, 2015.
- [15] K. Gao, W.-Q. Wang, J. Cai, J. Xiong, "Decoupled frequency diverse array range–angle-dependent beampattern synthesis using non-linearly increasing frequency offsets," IET Microw. Antennas Propag., vol. 10(8), pp. 880–884, 2016.
- [16] M. Tan, L. Bao, H. Zhu, W. Song, X. Wang, "Range-angle-dependent beamforming for FDA radar with Hamming interelement spacing and sinusoidal multicarrier approach," AIP Advances, vol. 13 015003, 2023.