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Centrality of Data  in Machine 
Learning

 

Models of Machine Learning (ML) as data-driven constructs 

D  à MD

• Credibility of MD associated with presence and mechanisms of  
inductive reasoning 

• Going beyond the scope of data D - open issues

• Learning realized from scratch

• Loss function focused predominantly on optimization of 
prediction/classification performance

• Inherently black-box nature of MD

• Possible data attacks

 



Machine Learning: Challenges

 
 credibility (confidence)

 interpretability, explainability, and transparency

 computational sustainability



Data  in Machine Learning

 

D= {(xk, tk)}, k=1,2,...,N

Loss function

  LD =   ||tk-MD(xk)|| +lR(D)
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Data and knowledge in 
Machine Learning
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Data and knowledge in 
Machine Learning
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Data  and Knowledge in Machine 
Learning

 

Data and knowledge 
D= {(xk, tk)}, k=1,2,...,M
K

Loss function

  LD,K =   ||tk-MD,K(xk)|| +l1R(D)+l2R(K)
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Knowledge 
Representation



Knowledge in Machine Learning:
Research Agenda 

 
Origin and taxonomy of knowledge

Knowledge representation 

Realization of unified knowledge –data environment  
of Machine Learning framework 

Efficient accommodation of knowledge 

Learning schemes 



Knowledge: origin and taxonomy

 
Scientific knowledge
Universal laws of physics, chemistry, ...
Physics-informed ML

World knowledge 
Facts from everyday life; intuitive and validated by human 
reasoning (subsumes linguistics) and validated through 
empirical studies; levels of abstraction (information granules)

Expert knowledge
Common knowledge, held by a particular group of experts;
levels of abstraction (information granules)



Physics -informed 
Machine Learning (1)

 physics –oriented knowledge 

g(x, y) = 0

Example 

Newton’s law of motion, Maxwell’s law of electromagnetics
Conservation law (mass, moment, energy...)
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Physics -informed 
Machine Learning (2)

 
Data D = {(xk, yk)}, k=1, 2,..., N

M-    ML model   M(xk, w) 

g(x, y) = 0

Loss function 

Commonly encountered regularization term in ML

L=!"M(xk,w)-yk"
2+λ

D
!‖g(xk,M(xk,w))‖2
D0

 

 



Knowledge representation

 

Algebraic equations

Differential equations

Simulation results

Spatial invariances (translations and rotations)

Logic rules and rule-based models 

Knowledge graphs

Relations and relational calculus

Semantic networks

Frames with default assignments 
... 



Knowledge representation

 Knowledge expressed at the higher level of abstraction 
than the one being realized by numeric entities 

The central role of information granules



Symbolic-subsymbolic (numeric)
perspective:

Duality of information granule
 

Symbols and 
symbol-oriented 
processing
L,M, S... 
S+M=L
Not(S)=L
...

number-oriented 
processing 
parameters of characteristic functions
Membership functions

semantics Numeric description 
(parameters) 

fuzzy setS, M, L,-L,...
Numeric parameters of 
Triangular membership function 
T(x; 0, 4, 7)



Symbolic versus connectionist 
pursuits in AI

 

M. Minsky, Logical versus analogical or symbolic versus connectionist or neat 
versus scruffy,  AI Magazine, 12, 2, 1991  

time

symbolismconnectionist connectionist

... our purely numeric connectionist networks are inherently deficient 
in abilities to reason well; or purely symbolic logical systems are inherently
deficient  in abilities to represent the all important  heuristic connections
between things –the uncertain approximate or analogical links...



Knowledge integration:
Two levels 

 
Knowledge integration at the level of available  data 

Knowledge integration at the level of ML models   



Architectures

Knowledge integration-
data level  



Knowledge in Machine Learning

 
Knowledge mechanisms in data

Moving beyond generic mechanisms of
-outlier elimination
-imputation 

Accommodation of relational constraints
 



Knowledge-based data 
pre-processing

constraint 
satisfactionLogic expressions

x1    x2 ....  xn   y

Weights in loss 
function

constraints

Constraint – relation (p) of not-acceptable relationships among 
variables: 
   high(xki) & low(xkj)   L1
       high(xki) & high(yk)  L2
   ....
dk=L1(xk) &L2(xk)&... & Lp(xk, yk), wk=1-dk

wk

x1
xk

xN D
D,w



Knowledge-based data 
pre-processing

D,w(K)

MD

L=#(%!(xk)
D

-tk)2wk 

 



Coverage and specificity:
performance criteria for matching data and 

information granule

  
coverage
Datum x is included in information granule  A

specificity
Expressing how detailed (specific) information granule  A is
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Coverage and specificity:
Characterization (1)

  

A=[a, b]

coverage
  cov(x, A)= A(x) =
    1 if x in A, 
    0 otherwise

specificity
sp(A)= t(length (A)), t- decreasing function of length of A
   =1-(b-a)/range
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Coverage and specificity:
Characterization (2)

 

A-fuzzy set

coverage
  cov(x, A)= A(x)

specificity
  sp(A)=   sp(Aa)da
Aa- a cut of A
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Coverage and specificity:
matching criteria for data and information

granule

coverageàmax
specificityàmax
Conflicting requirements
Overall performance à cov*sp 

(cov*sp)1

(cov*sp)2

(cov*sp)2>(cov*sp)1

(cov*sp)3

(cov*sp)4

(cov*sp)3>(cov*sp)4



Coverage and specificity:
Support of data by information granule

coverage

specificity

x

A



Granular embedding

Elevation of numeric parameters a of model to 

granular parameters A

  y= M(x; a) à Y = M(x; G(a, e))= M(x; A)

e- level of information granularity (optimized) 

min(a(1-e), a(1+e)) max(a(1-e), a(1+e)) 
a



Gaussian Process (GP) 
regression models

Function space view versus parameter (weight) space view

Gaussian process: 
collection of random variables; any finite number have
a joint Gaussian distribution

f(x)~ GP(m(x), k(x,x’))

mean function  m(x)= E[f(x)]

covariance function k(x,x’)= E[(f(x)-m(x))(f(x’)-m(x’))]



GP regression models: key ideas 

prior posterior



GP regression models: design (1) 

Data D = {(xk, targetk)}, k=1, 2,..., N

Given x*, determine output      P(f(x*)|f(X))
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GP regression models: design (2) 

Data D = {(xk, targetk)}, k=1, 2,..., N

Given x*, determine output P(f(x*)|f(X))

P(f(x*)|f(X))= N(m(x*), s(x*))

m(x*)=k(X, x*)Tk(X,X)-1f(X)

s(x*)=k(x*,x*)-k(X,x*)Tk(X,X)-1k(X,x*)



Data-knowledge ML architecture

 

Symbolic model MK MD

Gaussian Process 
(GP)

Symbol grounding 



Symbolic model MK

 

Symbolic model

Relationships elicited among symbols expressed over input and output 
variables

Domain knowledge expressed through symbols

Symbols: logic framework ={linguistic terms, logic connectives, rules...}

-if x is small & y is negative large then output is medium
- larger x entails smaller z

Assumption: symbol ordering (small  < medium < large...etc)

Symbol grounding: connecting symbols to their actual meaning  
  



Design (1)

-numeric representatives of symbols  DK= {(ai, bi, ci, di)}

-symbolic model described by rules, viz. tuples 

Gaussian Process (GP) built on DK

Optimization of DK with the aid  population-based optimization (e.g., PSO)



Design (2)

D={(xk,tk)},k=1,2,..,N

Yk=Gran[GP(yk|xk, DK)]

Min MD, w,l L

L=λ" (#!(xk)
D

-tk)2+(1-λ)"(1 − *+,(#!
!

(-"), /")01(/")) 

 

Loss function L as a fitness function of PSO optimized 
with regard to ai, bi,ci, di



Parameterized knowledge-based
model(1)

D

Y
y

e

MK MD



Parameterized knowledge-based
model(2)

Granular embedding   aà A(e)

  MK      Yk=MK(xk, A(e))

D={(xk,tk)}, k=1,2,...,N

values of parameters of MK estimated on a basis of D



Parameterized knowledge-based
model(2)

Granular embedding    aà A(e)
a-nominal values of parameters

  MK      Yk=MK(xk, A(e))

  MD       yk=MD(xk,w)

D={(xk,tk)}, k=1,2,...,N

L=λ" (#!(xk)
D

-tk)2+(1-λ)"(1 − *+,(#!
!

(-"), /"(0))12(/"(0))) 

 

MinM,l,e L



Conclusions

 

Data and knowledge as an essential unified Machine Learning 
design framework  

Key challenges and opportunities:

 Knowledge representation 

 Integration of knowledge in the learning environment 

The role of Granular Computing 

 


