Алгоритм адаптации многофазного процесса реагирования на пожары объектов топливно-энергетического комплекса

Р. Ш. Хабибулин

Академия Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий

kh-r@yandex.ru

Аннотация. Рассматривается модель и программный комплекс в качестве системы поддержки принятия решений (СППР) для анализа и моделирования процессов реагирования на пожары на объектах топливноэнергетического комплекса (ТЭК). Реализуется гибридная модель процесса реагирования на пожары, где переходы между интервалами описываются цепью Маркова, а длительность каждого интервала моделируется гаммараспределением. В работе применены максимального правдоподобия для оценки параметров распределений, статистические методы устойчивости параметров модели. Сформулированы предложения для развития данного подхода моделированию многофазных процессов реагирования на условиях В неопределенности, возможностью исследования структурных и временных характеристик процесса реагирования и их оптимизации.

Ключевые слова: пожар; топливно-энергетический комплекс; гамма-распределения; интервал реагирования; цепи Маркова

I. Введение

Эффективное реагирование на пожары является важным элементом системы обеспечения безопасности объектов топливно-энергетического комплекса (ТЭК), который характеризуется высокой пожарной опасностью и масштабностью возможных негативных последствий от пожаров и взрывов. В современных условиях разработка математических моделей, алгоритмов и специализированных программных средств для анализа и оптимизации процессов реагирования представляет собой актуальную научно-практическую задачу [1-6]. В работе [1] предложена модель возникновения пожара на автостоянке путем применения математической модели стохастического или вероятностного метода описания процессов на основе теории конечных цепей Маркова. В [2] рассмотрены особенности исследовании классических математических моделей для расчета развития пожара в легковых автомобилях, отмечены их достоинства и недостатки. Кроме исслелования классических математических моделей, показано, что существует альтернативный подход - стохастические или вероятностные методы описания развития пожаров автомобилей. Приведен пример, иллюстрирующий возможности оценки времени горения легкового автомобиля с помощью конечных цепей Маркова. В работе [3] описывается алгоритм оценки риска распространения пожаров на объекты, прилегающие к строительным площадкам. Риск отождествляется с вероятностями наступления неблагоприятных событий. Для построения алгоритма использован математический аппарат дискретных цепей Маркова с двенадцатью состояниями, два из которых являются поглощающими. В работе [4] предложен метод машинного обучения цепей Маркова по статистическим данным о времени реагирования пожарно-спасательных подразделений, а также использование обученных моделей и технико-экономических оценок для назначения оптимального ранга пожара позволяют применять построенные на их основе алгоритмы в составе систем поддержки принятия решений пожарной безопасности.

Основная цель проводимого исследования — разработка и валидация комплексной модели и алгоритма процесса реагирования на пожары объектов ТЭК на основе ретроспективных статистических данных, что позволяет:

- анализировать временные характеристики каждой фазы реагирования (6 фаз) на всех этапах от сообщения о пожаре до его ликвидации;
- оптимизировать в дальнейшем распределение ресурсов для ликвидации пожара (на основе прогноза ранга пожара);
- прогнозировать эффективность реагирования пожарно-спасательных подразделений при изучении возможных пожаров и чрезвычайных ситуаций;
- разрабатывать комплексные имитационные модели реагирования и координации пожарноспасательных подразделений для проведения учений и совершенствования образовательного процесса.

В результате моделирования многофазного процесса реагирования на пожары вырабатываются рекомендации для создания гибкой и эффективной системы защиты объектов ТЭК, способной адаптироваться к различным условиям и сценариям развития событий на пожаре, в том числе, с учетом возможного ресурсного ограничения и учета различных средств противопожарной защиты.

II. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Процесс реагирования пожарно-спасательных подразделений на пожар объекта ТЭК разделен на 6 основных фаз:

- 1. Интервал времени сообщения.
- 2. Интервал времени прибытия первого подразделения.
 - 3. Интервал времени подачи первого ствола.
 - 4. Интервал времени локализации пожара.
- 5. Интервал времени ликвидации открытого горения.
- 6. Интервал времени ликвидации последствий пожара.

Все временные показатели по каждой фазе фиксируются при учете пожаров в базе данных.

Процесс реагирования моделируется как Марковская цепь [5] с матрицей переходных вероятностей из состояния i в состояние j:

$$P(X_{t+1} = j \mid X_t = i) = p_{ij}$$

где: X_t — состояние процесса в момент времени t; p_{ij} — элемент матрицы переходных вероятностей P.

Матрица переходных вероятностей оценивается на основе статистических данных с использованием метода максимального правдоподобия. Стационарность процесса оценивается через второе по модулю собственное значение матрицы переходов:

$$\lambda_2 = max\{|\lambda_i|: \lambda_i \neq 1, i = 2,3,...n\}$$

Мера стационарности:

$$S = 1 - \lambda_2$$

Эргодичность цепи Маркова оценивается через минимальную сумму вероятностей переходов:

$$E = min\left\{\sum_{j=1}^{n} p_{ij}\right\}$$

Время пребывания в каждой фазе реагирования моделируется с помощью гамма-распределения с функцией плотности вероятности:

$$f(x; \alpha, \beta) = \frac{\beta^{\alpha} \cdot x^{\alpha - 1} \cdot e^{-\beta x}}{\Gamma(\alpha)}, x > 0$$

где: α — параметр формы, влияющий на вид распределения; β — параметр масштаба, влияющий на разброс значений; $\Gamma(\alpha)$ — гамма-функция.

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$$

Математическое ожидание гамма-распределения:

$$E[X] = \frac{\alpha}{\beta}$$

Дисперсия гамма-распределения:

$$D[X] = \frac{\alpha}{\beta^2}$$

Для оценки параметров гамма-распределений используется метод максимального правдоподобия. Для выборки значений времени $t_1,t_2,...,t_n$ сформулирована логарифмическая формула правдоподобия:

$$L(\alpha, \beta) = n \cdot \alpha \cdot \ln(\beta) - n \cdot \ln(\Gamma(\alpha)) + (\alpha - 1)$$
$$\cdot \sum_{i=1}^{n} \ln(t_i) - \beta \sum_{i=1}^{n} t_i$$

Оценки параметров α и β находятся путем максимизации этой функции.

Так как выборка пожаров не велика (290 записей в категории «резервуары»), то, в случае необходимости, применяется адаптивный бутстрап с целью аугментации данных:

$$x_i^* = x_i + \varepsilon_i, \quad i = 1, 2, \dots, n$$

где: x_i^* — новое сгенерированное значение; x_i — исходное значение из выборки; $\varepsilon_i \sim N(0, \sigma^2)$ — случайная величина, распределенная по нормальному закону; σ^2 — дисперсия, адаптивно подбираемая на основе исходных данных.

Байесовская оптимизация для матрицы переходных вероятностей в цепи Маркова использует принципы байесовского вывода для получения оптимальных оценок вероятностей с учетом как априорных представлений, так и наблюдаемых данных.

Для многофазного процесса реагирования на пожары объектов ТЭК, состоящего из 6 фаз, матрица переходных вероятностей P имеет размерность 6×6 , где элемент p_{ij} представляет вероятность перехода из фазы i в фазу j.

Для каждой строки матрицы P устанавливается априорное распределение Дирихле.

Функция плотности вероятности распределения Дирихле имеет вид:

$$f(p_{i1}, p_{i2}, ..., p_{i6} | \alpha_{i1}, \alpha_{i2}, ..., \alpha_{i6}) = \frac{1}{B(\alpha_i)} \prod_{j=1}^{6} p_{ij}^{\alpha_{ij}-1},$$

где $B(\alpha_i)$ — нормализующая константа, выражающаяся через многомерную бета-функцию:

$$B(\alpha_i) = \frac{\prod_{j=1}^{6} \Gamma(\alpha_{ij})}{\Gamma(\sum_{j=1}^{6} \alpha_{ij})}$$

Завершающим шагом алгоритма является формирование итоговой вероятностно-временной модели процесса реагирования, которая объединяет структурные характеристики (матрица переходных вероятностей) и временные характеристики (параметры гамма-распределений) процесса (рис. 1).

III. РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Разработанное программное обеспечение реализовано на языке программирования *Python* с использованием следующих основных компонентов:

ядро моделирования; графический интерфейс; модули статистического анализа; модули адаптации.

- В программе реализованы следующие алгоритмы оптимизации:
 - 1. Оптимизация параметров гамма-распределения.
- 2. Адаптивный бутстрап для аугментации набора данных при малых выборках статистических данных для улучшения статистической значимости.
- 3. Байесовская оптимизация переходных вероятностей.

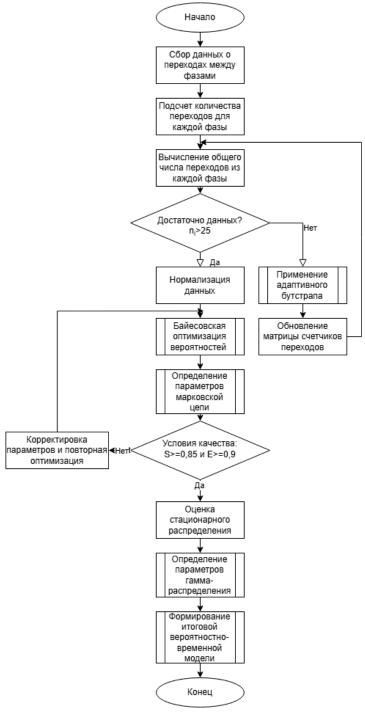


Рис. 1. Алгоритм адаптации многофазного процесса реагирования на пожары объектов ТЭК

Некоторые статистические показатели по всем шести фазам реагирования представлены в таблице (табл. 1).

ТАБЛИЦА І.	Показатели фаз реагирования
I A DJIVIII A I.	ПОКАЗАТЕЛИ ФАЗ РЕАГИРОВАНИЯ

Фаза реагирования (1-6)	Среднее время, мин	Коэффициент вариации	Коэффициент детерминации
Сообщение о пожаре	2,5	0,32	0,87
Прибытие первого подразделения	8,7	0,45	0,82
Подача первого ствола	1,2	0,28	0,91
Локализация пожара	42,3	0,52	0,78
Ликвидация открытого горения	38,1	0,48	0,81
Ликвидация последствий пожара	25,4	0,43	0,85

Визуализация результатов моделирования в виде матрицы переходных вероятностей для 6 фаз реагирования показана на рис. 2.

Рис. 2. Матрица переходных вероятностей для 6 фаз реагирования

IV. ЗАКЛЮЧЕНИЕ

В работе представлена модель и алгоритм, которые основаны на гибридном подходе, сочетающем цепи Маркова для описания структуры процесса и гаммараспределения для моделирования временных интервалов. Ключевыми особенностями модели являются:

- шестифазная структура процесса реагирования;
- применение гамма-распределений для моделирования времени;
- байесовская оптимизация переходных вероятностей;
- адаптивный бутстрап для аугментации малых выборок;
- модульная архитектура программной реализации.

Анализ результатов показывает:

- 1. Наибольшая вариативность наблюдается в фазах локализации пожара и ликвидации открытого горения.
- 2. Стационарность процесса подтверждается высоким показателем (0,87).
- 3. Эргодичность системы обеспечивает надежность долгосрочных прогнозов.

Разработанная модель и алгоритм демонстрируют высокую эффективность в анализе и прогнозировании времени реагирования на пожары. Статистическая значимость результатов подтверждается комплексом проведенных тестов.

Список литературы

- Шарапов С.В. Стохастическое моделирование процессов возникновения пожаров на автостоянке / С.В. Шарапов, И.О. Литовченко, А.С. Крутолапов // Вестник Воронежского института ГПС МЧС России. 2016. № 4(21). С. 84-86.
- [2] Моторыгин Ю.Д. Оценка времени горения легкового автомобиля с помощью конечных цепей Маркова / Ю.Д. Моторыгин, В.А. Ловчиков, С.В. Шарапов // Пожаровзрывобезопасность. 2008. Т. 17, № 2. С. 63-66.
- [3] Чертов В.А. Алгоритм оценки риска распространения пожаров на объекты, прилегающие к строительным площадкам / В.А. Чертов, А.В. Падалко, Д.Е. Орлова // Вестник Воронежского института высоких технологий. 2020. № 4(35). С. 47-51.
- [4] Топольский Н.Г. Применение машинообучаемых цепей Маркова для определения ранга пожара и прогнозирования фаз его развития / Н.Г. Топольский, В.Я. Вилисов, Р.Ш. Хабибулин [и др.] // Пожаровзрывобезопасность. 2021. Т. 30, № 6. С. 39-51.
- [5] Вилисов В.Я., Хабибулин Р.Ш. Анализ эффекта локализации марковских моделей процесса ликвидации пожара для различных типов объектов топливно-энергетического комплекса // Материалы международной научно-технической конференции "Системы безопасности". 2024. № 33-1. С. 12-15.