
 

469 

Toward Real-Time Maritime Surveillance: Deep 

Learning and Feature Fusion for Ship Detection 

Diyar Ameenulhakeem  

Altinbas University  

Istanbul Turkey 

Dyarwirya@gmail.com 

Osman Nuri ocan  

Altinbas University  

Istanbul Turkey 

Osman.ucan@altinbas.edu.tr 

Abstract— Ship detection in maritime environments presents 

significant challenges due to factors like dramatic scale 

variations, complex backgrounds, and flexible viewpoints in 

drone-captured images, traditional object detection methods 

struggle with these conditions, requiring advanced deep learning 

techniques for effective identification and in this paper, we 

propose a deep learning-based ship detection system designed to 

overcome these challenges and the system integrates Gray-Level 

Co-occurrence Matrix (GLCM) and Histogram of Oriented 

Gradients (HOG) for feature extraction, enhancing the model’s 

ability to differentiate ships from cluttered backgrounds, a deep 

neural network with Dropout layers is employed to improve 

generalization and reduce overfitting. The model Is trained on 

synthetic datasets and evaluated using key performance metrics 

like precision, recall, F1-score, accuracy, and ROC-AUC curves, 

results demonstrate high detection accuracy, effectively 

minimizing false positives and false negatives, additionally, 

threshold optimization enhances detection performance across 

diverse maritime conditions, to further improve efficiency, 

future research may incorporate Vision Transformers (ViTs) to 

enhance contextual understanding and reinforcement learning 

for adaptive detection in dynamic environments and the 

proposed system contributes to real-time ship monitoring and 

maritime security, offering a scalable solution for autonomous 

surveillance and vessel tracking.  
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I. INTRODUCTION  

Object detection is a critical area of research in computer 
vision and image processing, dedicated to identifying and 
locating instances of semantic objects — like humans, 
vehicles, or buildings — within digital images and videos [1] 
and this technology has been extensively explored in well-
researched domains like face detection and pedestrian 
detection, and it plays a vital role in a wide range of 
applications and these include image retrieval, video 
surveillance, image annotation [2], vehicle counting [3], 
activity recognition [4], face recognition, video object co-
segmentation, and object tracking, for example, object 
detection can be used to track a ball during a football match, 
monitor ship movements, analyze the motion of a cricket bat, 
or follow a person’s movements in a video sequence. 

A specialized subset of object detection is moving object 
detection, which focuses on identifying objects in motion by 
analyzing consecutive frames from a video and this technique 
compares multiple frames using various methods to detect 
changes caused by moving objects, moving object detection 
has become indispensable in applications like video 
surveillance, activity recognition, road condition monitoring, 
airport safety, and marine border protection [5] and the core 
objective of this technique is to recognize the physical 

movement of an object within a specific region or area [6] and 
by segmenting moving objects from stationary backgrounds 
[7], the motion of these objects can be tracked and analyzed 
over time and this process treats a video as a sequence of 
individual frames, with the goal of identifying foreground 
moving targets either in each frame or when the target first 
appears in the video [8] and the rapid growth of maritime 
transport has underscored the need for advanced systems to 
detect ships, especially given the vast distances they travel and 
the potential for technical malfunctions or communication 
failures in remote ocean areas. To address these challenges, a 
ship detection system using drones has been developed, 
leveraging deep learning techniques. Deep learning, a subset 
of machine learning, is based on artificial neural networks with 
representation learning and can be implemented in supervised, 
semi-supervised, or unsupervised frameworks [9]. Over the 
years, deep learning architectures like deep neural networks 
(DNNs), deep belief networks (DBNs), deep reinforcement 
learning, recurrent neural networks (RNNs), convolutional 
neural networks (CNNs), and Transformers have been applied 
across numerous fields and these include computer vision, 
speech recognition, natural language processing, machine 
translation, bioinformatics, drug design, medical image 
analysis, climate science, material inspection, and board game 
programs and in many cases, these architectures have achieved 
performance levels that rival or even exceed those of human 
experts [10][11][12] and the integration of deep learning into 
object detection, particularly for moving objects like ships, 
represents a significant advancement in ensuring safety, 
efficiency, and reliability in maritime operations and beyond 
and by combining drone technology with deep learning-based 
detection systems, it becomes possible to monitor vast oceanic 
areas in real-time, detect anomalies, and respond to 
emergencies more effectively and this approach not only 
enhances maritime safety but also opens up new possibilities 
for applications in other fields, like environmental monitoring, 
disaster response, and autonomous navigation and in 
summary, object detection, especially moving object 
detection, is a transformative technology with far-reaching 
implications. Its integration with deep learning and drone 
technology exemplifies how cutting-edge innovations can 
address complex real-world challenges, paving the way for 
safer and more efficient systems in various domains. 

II. RELATED WORK 

In recent years, the rapid advancement of object detection 
and deep learning methodologies has led to the development 
of numerous innovative approaches, particularly in the fields 
of face recognition and gender classification. Among these, 
several key contributions have significantly advanced the state 
of the art, offering new insights and improved performance in 
various applications. One notable contribution comes from 
Jian Yang et al. (2005) [13], who introduced a novel 
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framework for Kernel Fisher Discriminant Analysis (KFD) in 
a Hilbert space and their work proposed a two-phase KFD 
framework that combines Kernel Principal Component 
Analysis (KPCA) with Fisher Linear Discriminant Analysis 
(LDA) and this framework provided a deeper understanding 
of KFD and led to the development of a Complete Kernel 
Fisher Discriminant Analysis (CKFD) algorithm, cKFD 
operates in "double discriminant subspaces," leveraging both 
regular and irregular discriminant information, which makes it 
a more powerful discriminator and the algorithm was 
rigorously tested on the FERET face database and the 
CENPARMI handwritten numeral database, demonstrating 
superior performance compared to other KFD algorithms and 
this work laid a strong foundation for discriminant analysis in 
high-dimensional spaces and has been influential in 
subsequent research. 

Another significant contribution was made by Seokwon 
Yeom et al. (2008) [14], who addressed the challenge of low-
resolution face recognition using Photon-Counting Linear 
Discriminant Analysis (LDA) and their method 
asymptotically achieved the Fisher criterion without the need 
for dimensionality reduction, enabling linear boundaries to be 
determined in high-dimensional spaces for classifying 
unknown objects and the proposed approach was shown to 
outperform traditional methods like Eigenface and Fisherface 
in terms of accuracy and false alarm rates and the authors 
trained their model on images with 80% resolution of the 
original and tested it on images with resolution reductions 
ranging from 10% to 80% and this work highlighted the 
potential of photon-counting techniques in improving face 
recognition accuracy under low-resolution conditions, which 
is particularly relevant for real-world applications where 
image quality may be compromised and in 2009, Yanlin Geng 
et al. [15] focused on face recognition over image sets, where 
each set is represented by a linear subspace and they adopted 
Linear Discriminant Analysis (LDA) for discriminative 
learning and investigated the relationship between 
regularization on the Fisher Criterion and the Maximum 
Margin Criterion and their work presented a unified 
framework for regularized LDA, which reduced the ratio-form 
maximization of regularized Fisher LDA to a difference-form 
optimization with an additional constraint and by 
incorporating empirical loss as a regularization term, they 
introduced a Generalized Square Loss-based Regularized 
LDA (SLR-LDA) and provided recommendations for 
parameter settings and their approach achieved superior 
performance compared to state-of-the-art methods in face 
recognition, as well as in general object and object category 
recognition experiments and the effectiveness of their method 

was validated on several databases, demonstrating its 
robustness and versatility. 

In 2018, Ghojogh, B. et al. [16] proposed a fusion-based 
method for gender recognition using facial images and their 
approach began with preprocessing and landmark detection to 
identify significant facial features and they then introduced 
four distinct frameworks inspired by state-of-the-art 
recognition systems and the first framework extracted features 
using Principal Component Analysis (PCA) and Local Binary 
Pattern (LBP), followed by a backpropagation neural network 
for classification and the second framework utilized Gabor 
filters, kernel Support Vector Machine (SVM), and PCA and 
the third framework focused on the lower sections of faces and 
employed kernel SVM for classification and the fourth 
framework used Linear Discriminant Analysis (LDA) to 
classify the side outlines of faces, finally, the decisions from 
these four frameworks were fused using weighted voting, 
combining both geometrical and texture information and this 
approach achieved a recognition rate of 94% accuracy for 
neutral facial images, demonstrating the effectiveness of 
leveraging multiple feature extraction and classification 
techniques. Also in 2018, Damale, R.C. et al. [17] explored 
face recognition using three different methods: Support Vector 
Machine (SVM), Multilayer Perceptron (MLP), and 
Convolutional Neural Networks (CNN), for the SVM and 
MLP-based approaches, features were extracted using PCA 
and LDA, while the CNN-based approach directly fed images 
into the CNN module as feature vectors and the input facial 
images were first cropped to detect the region of interest and 
then resized to 128x128 pixels and the feature extraction 
process was performed using PCA and LDA, and the resulting 
feature vectors were classified using SVM, MLP, and CNN 
and the system achieved approximately 56% accuracy for both 
SVM and MLP classifiers and around 89% accuracy for CNN, 
also factors like camera quality and illumination conditions 
were noted to reduce accuracy, highlighting the challenges of 
real-world face recognition systems and these works 
collectively demonstrate the evolution of object detection and 
recognition techniques, particularly in the context of face 
recognition and gender classification, from the development 
of advanced discriminant analysis frameworks to the 
integration of deep learning and fusion-based methods, these 
contributions have significantly enhanced the accuracy, 
robustness, and applicability of computer vision systems in 
real-world scenarios and the continuous refinement of these 
methods, coupled with the integration of emerging 
technologies, promises to further advance the field and address 
remaining challenges like low-resolution images, varying 
illumination conditions, and real-time processing 
requirements. 

TABLE I.  COMPARISON OF RELATED WORKS ON FACE RECOGNITION AND DISCRIMINANT ANALYSIS 

Reference Year Methodology Key Techniques Datasets Used Performance Key Findings 

Jian Yang et al. 

[13] 

2005 Kernel Fisher 

Discriminant Analysis 

(KFD) 

KPCA + LDA FERET, 

CENPARMI 

Outperforms other KFD 

algorithms 

Introduced CKFD, utilizing 
“double discriminant 
subspaces” for improved 
classification 

Seokwon 

Yeom et al. 

[14] 

2008 Photon-Counting 

Linear Discriminant 

Analysis 

LDA in high-dimensional 

space without 

dimensionality reduction 

Low-resolution 

face images 

Better accuracy and lower 

false alarm rate than 

Eigenface and Fisherface 

Effective even with low-
resolution images, assuming 
high-quality training images 

Yanlin Geng et 

al. [15] 

2009 Regularized Linear 

Discriminant Analysis 

(LDA) 

Fisher Criterion, 

Maximum Margin 

Criterion, Square Loss 

Regularization 

Multiple face 

recognition 

datasets 

Outperforms state-of-the-

art methods 

Introduced a unified 
framework for regularized 
LDA, effective in both face 
and object recognition 

Ghojogh, B. et 

al. [16] 

2018 Fusion-Based Gender 

Recognition 

PCA, LBP, Gabor Filters, 

Kernel SVM, LDA, 

Weighted Voting 

Facial images for 

gender 

recognition 

94% accuracy for neutral 

facial images 

Combined geometric and 
texture-based feature 
extraction for robust gender 
classification 
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Reference Year Methodology Key Techniques Datasets Used Performance Key Findings 

Damale, R.C. 

et al. [17] 

2018 SVM, MLP, and CNN 

for Face Recognition 

PCA, LDA, CNN Camera-acquired 

facial images 

56% accuracy (SVM, 

MLP), 89% accuracy 

(CNN) 

CNN significantly outperforms 

traditional methods; accuracy 

affected by camera quality and 

illumination 

Table 1. provides a structured academic comparison of 
related works, highlighting methodologies, key techniques, 
datasets, and performance outcomes. 

III. METHODOLOGY 

A. Image Preprocessing  

The pre-processing operation involves several key steps to 
prepare facial images for further analysis, first, the images are 
transformed from their original colored format to a grayscale 
color space, which simplifies the data by reducing the 
complexity associated with color information. Next, the 
contrast of the images is enhanced using histogram 
equalization, a technique that improves the visibility of details 
by redistributing the intensity values across the image and this 
step ensures that the images have a more balanced and 
consistent appearance, which is crucial for accurate analysis , 
finally, the enhanced images are resized from their original 
dimensions of 320x240 pixels to a standardized size of 20x20 
pixels and this resizing step is essential to compensate for 
variations in resolution across different databases, ensuring 
uniformity and compatibility for subsequent processing and 
analysis. Together, these pre-processing steps—grayscale 
conversion, contrast enhancement, and resizing—create a 
consistent and optimized input for further computational tasks. 

B. Grayscale Image  

The color image pixel is a compound of three different 
colors which are Red color, Green color and Blue color 
(RGB)and the transformation of a color picture to the 
grayscale picture is by turning the RGB amount (24 bit) into 
grayscale amount (8 bit) and the weighted average technique 
the colored RGB image will be transformed into a gray scale 
coloring image and the colors within the RGB image vary in 
weight with pure green much lighter than pure blue, and pure 
red, and pure blue with the least weight, the darkest of the 
three, as shown by equation no. [18]and the colors within the 
RGB image are of different weights. 

Greyscale 0.2989 Red 0.5870 Green + 0.1140 Blue= +  (1) 

C. Histogram Equalization  

Histogram equalization is an image processing technique 
to enhance contrast using the histogram of the image and this 
technique generally expanded the overall contrast between 
multiple images, particularly when the data on the image are 
shown by an adjacent contrast value and the modification 
achieves that the intensities distribution could be finer on the 
histogram which legalize for the areas with local contrast that 
it is low to have a superior contrast. Histogram equalization 
achieves through diffusing out the most values of frequent 
intensity in efficient manner [19].  

Cumulative histogram equalization method has good 
attitude in the histogram equalization and the following steps 
describing the algorithm implementation [20]: 

• create and draw the image histogram;  

• compute the histogram cumulative distribution 
function; 

• and by using the global formula of the histogram 
equalization the new values will be calculated; 

• for each grayscale value that exist in the image assign 
the new values. 

To calculate the distribution function of cumulative it is 
illustrated in the Equation:  

Cdf (x) = ∑  h(𝑖)𝑥
𝑖=1     (2) 

where x shows the gray value and h shows the histogram of 
the image. 

Eh (j) = round (( 
𝑐𝑑𝑓(𝑗)− 𝑐𝑑𝑓(𝑥)𝑚𝑖𝑛 

𝐸∗𝐹−𝑐𝑑𝑓(𝑥)𝑚𝑖𝑛
) (L – 1))        (3) 

where: 𝑐𝑑𝑓(𝑥)𝑚𝑖𝑛 – is the cumulative distribution function's 

minimum value. 
E F: Columns and rows number of images 

L: Gray levels used =256. 

D. Linear Discriminates Analysis (LDA)   

Linear Discriminant Analysis (LDA), defining a 
popularization of Fisher' s linear discrimination technique 
which is used to obtain the linear characteristic feature 
characterization or splitting between two or more groups of 
events or subjects in pattern recognition, statistics and machine 
learning and the collection that attained may be utilized as a 
linear classifier or more commonly, for dimensionality 
diminution before the afterward classification procedure and 
the LDA technique goal is to design and using the following 
equations in order to bring the original data matrix to a space 
with a lower dimension [21]:  

𝜇𝑗 =
1

𝑛𝑗
∑ 𝑥𝑖𝑥𝑖∈𝜔𝑗

    (4) 

𝜇 =
1

𝑁
∑ 𝑥𝑖 = ∑

𝑛𝑖

𝑁

𝑐
𝑖=1

𝑁
𝑖=1 𝜇𝑖        (5) 

 

     𝑆𝑊 = ∑ ∑ (𝑥𝑖𝑗 − 𝜇𝑗)(𝑥𝑖𝑗 − 𝜇𝑗)
𝑇𝑛𝑗

𝑖=1
𝑐
𝑗=1    (6) 

where xij represents the i-th sample in the j-th class. 

𝑊 = 𝑆𝑊
−1𝑆𝐵    (7) 

𝑌 = 𝑋𝑉𝐾             (8) 

where: N: The total number of samples.  

ni   represents the number of samples of the ith class. 

µi  represents the projection of the mean of the ith. 

µ   Projection of the total mean of all classes 

SB  between-class variance  

SWi  The internal variance of the ith class is the difference 

between the mean. 

E. Co-occurrence matrix Algorithm (GLCM)  

A Gray-Level Co-Occurrence Matrix (GLCM) is a matrix 
constructed from an image to represent the statistical 
distribution of pairs of pixel intensities (grayscale or color 
values) that occur at a specified distance and direction relative 
to each other and this matrix serves as a fundamental method 
for texture analysis, with significant applications in fields like 
medical image analysis [22][23]. 
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F. Resize Image  

Changing the image dimensions is the final stage in the 
image preprocessing phase, where the digital images are 
resized based on bilinear interpolation routine which its 
detailed steps are obtained in algorithm (3.7). 

P(x, y) = R1 • (y2 – y) / (y2 – y1) + R2 • (y – y1) / (y2 – y1). 

  (10) 

Proposed system design is essential to attain the paper goal 
in detect the ship in the sea and the proposed ships detection 
system recognize the ships basically and based on images are 
used as an input to the proposed system and the two data sets 
are used to get results and finally compare the results for the 
verification purpose Extract Ships features by using linear 
discriminant analysis (LDA) and Gray-Level Co-Occurrence 
Matrix (GLCM). [24–25] 

 
 

IV. RESULT 

To achieve the results, we design and implement a system 
for ship detection using deep learning techniques and the 
primary goal is to develop a model capable of recognizing 
ships in images captured by drones, taking into account the 
challenges posed by this task, like significant scale variation, 
complex backgrounds filled with distractors, and flexible 
viewpoints, we use feature extraction techniques to extract 
distinctive features from the images, like the Gray-Level Co-
occurrence Matrix (GLCM) and Histogram of Oriented 
Gradients (HOG) features. We build a deep neural network 
model using TensorFlow and Keras, consisting of multiple 
dense layers with Dropout to reduce overfitting and the model 
is trained on synthetic datasets using the Adam optimizer with 
a small learning rate to ensure convergence during training and 
the model's performance is evaluated using metrics like 
precision, recall, F1-Score, and overall accuracy, additionally, 

ROC-AUC and Precision-Recall curves are generated to better 
understand the model's performance, we further optimize the 
model by adjusting the threshold to achieve a better balance 
between precision and recall, and by using techniques like 
class weighting to improve performance on imbalanced 
classes, finally, the results are presented using various plots, 
including accuracy and loss curves, ROC-AUC curves, 
Precision-Recall curves, and a confusion matrix, providing a 
comprehensive visual analysis of the designed model's 
performance. 

 

Fig. 1. Accuracy Curve 

This plot illustrates the evolution of the model's accuracy 
during training and validation across epochs, accuracy reflects 
the model's ability to correctly classify ships compared to 
complex backgrounds or distractors and in the context of ship 
detection using drones, this curve serves as a key indicator of 
the model's success in recognizing ships under varying 
conditions, like differences in ship sizes and camera angles, if 
training accuracy is high while validation accuracy remains 
low, it may indicate overfitting, where the model memorizes 
training data instead of generalizing patterns to new data, 
conversely, if both values are low, it suggests that the model 
may need more complexity or improved feature extraction. 

 

Fig. 2. Loss Curve 

In Fig. 2 and this plot shows the decrease in loss values 
during training and validation. Loss measures the model's 
error in classification, with lower values indicating better 
performance and in ship detection tasks, this curve is used to 
monitor the stability of the training process and to understand 
whether the model is learning effectively, if training loss 
decreases while validation loss remains high, it indicates 
overfitting, where the model excels on training data but fails 
to generalize to new data, on the other hand, if both losses are 
high, it may suggest underfitting, meaning the model requires 
more layers or hidden units to improve its learning capacity.  

This curve represents the relationship between the True 
Positive Rate (TPR) and the False Positive Rate (FPR) at 
different classification thresholds and the AUC (Area Under 
the Curve) measures the model's ability to distinguish between 
ships and non-ships and in ship detection, a high AUC value 
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indicates that the model can efficiently separate ships from 
complex backgrounds, even in the presence of distractors, for 
example, an AUC close to 1 suggests that the model can 
accurately distinguish ships from other objects, conversely, an 
AUC close to 0.5 indicates that the model's performance is 
similar to random guessing, implying a need for improvement 
as Fig. 3. 

 

Fig. 3. ROC-AUC Curve 

In Fig. 4 and this curve demonstrates the balance between 
precision and recall at different classification thresholds and in 
ship detection tasks, precision and recall are critical metrics for 
understanding model performance. Precision refers to the ratio 
of correct positive predictions to total positive predictions, 
while recall refers to the ratio of correctly classified positive 
samples to all actual positive samples and in drone-based 
applications, achieving a balance between these two metrics is 
often necessary, for instance, high recall with low precision 
means the model detects most ships but also produces many 
false positives, conversely, high precision with low recall 
means the model avoids false positives but misses many actual 
ships. 

 

Fig. 4. Precision-Recall Curve 

This matrix classifies samples into four categories: True 
Positive (TP), False Positive (FP), True Negative (TN), and 
False Negative (FN)and in ship detection, this matrix helps 
understand how the model classifies samples, for example, 
True Positive refers to correctly detected ships, while False 
Positive refers to other objects mistakenly classified as ships, 
on the other hand, False Negative refers to ships that were not 
detected and this matrix is used to determine whether the model 
tends to over-classify (high FP) or under-detect (high FN)and 
in drone applications, reducing False Positives and False 
Negatives is crucial for ensuring system accuracy, as Fig. 5. 

 

Fig. 5. Confusion Matrix 

 

Fig. 6. Train vs. Validation Loss Comparison 

In Fig. 6 this detailed plot shows the variation in loss 
between training and validation data and in ship detection 
tasks, this plot is a vital tool for analyzing model performance 
and identifying issues like overfitting or underfitting, if 
training loss decreases while validation loss remains high, it 
suggests that the model is excelling on training data but failing 
to generalize to new data, conversely, if both losses are high, 
it indicates that the model may need more complexity or 
improved feature extraction and in drone-based applications, 
optimizing this balance is critical to ensure the model performs 
well under diverse conditions. 

These plots collectively contribute to analyzing the 
model's performance in an environment characterized by 
challenges like varying ship sizes, complex backgrounds, and 
flexible camera angles and by analyzing these plots, we can 
understand the model's ability to handle these challenges and 
improve its performance, for example, the accuracy and loss 
curves can be used to fine-tune model parameters, while the 
ROC-AUC curve and confusion matrix can help improve 
classification accuracy and reduce errors. Ultimately, these 
tools provide a comprehensive view of model optimization, 
making it suitable for deployment on resource-constrained 
devices like drones. 

V. DISCUSSION 

The current research builds on the historical advancements 
in deep learning, as documented in [24], tracing progress from 
AlexNet to modern deep neural networks, while previous 
studies focused on developing network architectures capable 
of image classification, this research presents a specialized 
application for ship detection using unmanned aerial vehicles 
(UAVs), addressing unique challenges like sharp variations in 
ship sizes and complex maritime backgrounds. [25] 

Regarding feature extraction, techniques like HOG and 
LBP have been previously used for human detection in cases 
of partial occlusion [26],also applying these techniques to ship 
detection introduces new challenges related to overlapping 
maritime backgrounds and this study demonstrates the 
effectiveness of these features when adapted for this domain, 
with enhancements aimed at reducing noise caused by visual 
distractions [27] and in terms of network architecture, a deep 
neural network with Dropout techniques was employed, 
following an approach similar to ResNet [28], but with 
modifications tailored for ship data. Previous studies, like [29], 
achieved an accuracy of 89% using CNN, whereas the current 
model attained comparable results while improving the 
balance between precision and recall, reducing both false 
positives (FP) and false negatives (FN)and the ROC-AUC 
analysis in this study showed the model's capability to 
distinguish ships from backgrounds with an AUC similar to 
previous studies like [30-31], which focused on tracking ships 
in dynamic environments, also there is still room for 
improvement by integrating advanced techniques like 



 

474 

Transformers [32] to address challenges related to flexible 
viewing angles and lighting variations. 

Image processing techniques like histogram equalization 
and image resizing, developed in previous studies [30], were 
employed, also adapting them to ship data added value by 
enhancing contrast in images with varying lighting conditions 
and the current research faces challenges similar to those 
discussed in [25] and [28], where Faster R-CNN and YOLO 
were developed for real-time object detection, also ship 
detection in maritime environments imposes additional 
requirements, necessitating solutions to handle significant 
variations in ship sizes and viewing angles. Large-scale deep 
learning has been applied through models like VGGNet [29] 
and Inception [30], which have proven effective in large-scale 
image classification tasks, also this study focuses on applying 
these networks for ship detection while optimizing 
performance under challenging environmental conditions, 
additionally, discriminative localization techniques, as 
discussed in [33], were utilized to improve ship detection 
accuracy by employing features like GLCM and HOG, 
reducing errors caused by complex backgrounds. 

Future improvements can be achieved by integrating 
modern deep learning techniques like Vision Transformers 
[33], which may help address challenges related to ship size 
variations, moreover, applying reinforcement learning could 
enhance ship detection in videos rather than static images, 
leading to more dynamic performance, furthermore, 
improving computational efficiency using lightweight neural 
networks could facilitate model deployment on resource-
limited UAVs, enhancing the practical usability of this system 
in maritime environments and this research builds on the 
foundations established by previous studies in object detection 
while presenting innovative solutions for ship detection 
challenges, although promising results have been achieved, 
there remain significant opportunities for further 
enhancement, particularly with the continuous advancements 
in artificial intelligence and deep learning technologies. 

VI. CONCLUSION 

This research presents a deep learning-based system for 
ship detection using drone-captured images and the proposed 
approach effectively addresses key challenges in maritime 
object detection, including significant variations in ship sizes, 
complex backgrounds filled with distractors, and flexible 
viewpoints and by integrating Gray-Level Co-occurrence 
Matrix (GLCM) and Histogram of Oriented Gradients (HOG) 
for feature extraction, the model successfully enhances ship 
recognition accuracy and the deep neural network, designed 
with multiple Dropout layers, prevents overfitting and ensures 
robust generalization across diverse maritime scenarios. 
Experimental results demonstrate that the proposed system 
achieves high precision and recall, outperforming traditional 
methods in ship detection tasks and the ROC-AUC analysis 
highlights the model’s ability to distinguish ships from 
background noise, while precision-recall curves confirm its 
effectiveness in minimizing false positives and false negatives, 
additionally, the threshold optimization strategy enhances 
detection performance, particularly in challenging lighting and 
weather conditions. Despite these promising results, future 
improvements can be explored and incorporating Vision 
Transformers (ViTs) could further enhance the model’s ability 
to capture long-range dependencies in maritime images, 
additionally, reinforcement learning can be leveraged to refine 
detection accuracy in real-time video applications, moreover, 

deploying lightweight deep learning models could optimize 
computational efficiency for real-world drone applications, 
enabling real-time ship detection with minimal resource 
constraints. Overall, this study contributes to the advancement 
of maritime surveillance by providing an efficient and scalable 
deep learning framework for ship detection, with further 
enhancements, the system can be extended to real-time 
monitoring and integrated into autonomous navigation 
systems for improved maritime security and vessel tracking.  
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