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Abstract––The exact location of the left dorsolateral 

prefrontal cortex (DLPFC) is important for proper brain 

stimulation and neuroimaging in neuropsychiatric work. 

Despite its significance, individual anatomical differences 

makes targeting the DLPFC difficult with conventional 

methods as the “5 cm rule” which often misses the true DLPFC 

location. For this reason, we propose a novel application of 

machine learning; specifically the Mask R-CNN deep learning 

architecture to automatically identify and segment the DLPFC 

on structural brain images. We gathered annotated brain 

images by experts with DLPFC labels and fine-tuned a Mask 

R-CNN model to detect the anatomical patterns that defines 

the DLPFC in each person. The trained model produces a 

segmented mask of the DLPFC for each image, enabling 

personalized targeting.  

Results: The model achieved high accuracy in localizing the 

DLPFC, with a mean average precision (mAP) of ~0.85 on 

validation scans, indicating close correspondence between the 

predicted masks and expert annotations. 

Significance: This automated approach outperforms 

heuristic methods in precision and consistency, and it offers a 

fast, reproducible means of tailoring targeting to each patient’s 

brain anatomy. We discuss technical challenges such as data 

requirements and integration into clinical workflows and 

demonstrate the potential clinical impact for therapies like 

transcranial magnetic stimulation (TMS). By leveraging Mask 

R-CNN in the neuroimaging domain, this work represents a 

novel step toward personalized neuromodulation and improved 

treatment outcomes in psychiatry. 
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I. INTRODUCTION 

The left dorsolateral prefrontal cortex (DLPFC) is a key 
target for neuromodulation therapies such as repetitive 
transcranial magnetic stimulation, rTMS and a focus of many 
neuroimaging studies in psychiatry. Precise localization of 
the DLPFC on each individual’s brain is crucial: in 
depression treatment, for example, stimulating the correct 
DLPFC location is associated with better therapeutic 
response. Anatomically, the DLPFC lies on the lateral aspect 
of the frontal lobe, primarily Brodmann areas 9 and 46, and 
can vary in exact position and extent between individuals. 
However, current targeting approaches often do not 
account for this variability. The commonly used “tens rule” 
for locating DLPFC at ~5–6 cm anterior to the motor cortex 
is a coarse heuristic and can frequently miss the true DLPFC 
entirely. Even neuronavigation based on group-average brain 
image coordinates may place the target in suboptimal 

locations for many people. This lack of personalization 
contributes to inconsistent outcomes in both research and 
clinical settings. 

 

Fig. 1. The axial view of a successful model delineation of the DLPFC 

region across a brain image. 

 

Fig. 2. The sagittal view of a successful model delineation of the DLPFC 

region across a brain image. 

Need for Personalization: There is growing evidence that 
DLPFC targets must be individualized to maximize 
efficacy. Variations in frontal cortex anatomy and 
connectivity mean a one-size-fits-all target is unlikely to be 
optimal for everyone. Notably, recent connectivity-guided 
targeting studies have shown that the ideal stimulation site 
can differ by several centimeters across people, far beyond 
the 5 cm rule. For instance, Cash et al. (2021) demonstrated 
that using each person’s functional connectivity patterns 
allows computing a personalized DLPFC target with a 
median test-retest precision of ~2 mm – underlining how 
individualized targets are both feasible and much more 
precise than standard methods. These personalized sites also 
did not simply converge to the traditional “group average” 
location, reinforcing the importance of tailoring to individual 
brain anatomy and networks. 

At the same time, whether such personalization translates 
into superior clinical outcomes is still under investigation. 
Some recent work questions if rTMS using individualized 
DLPFC sites yields better antidepressant responses than 
conventional targeting. Nonetheless, the trend in 
neuroscience is toward precision targeting – often termed 
personalized or precision psychiatry – where treatment is 
guided by the patient’s own brain data rather than population 
averages. An accurate, automated method to localize the 
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DLPFC for each individual could therefore be highly 
valuable, providing the anatomical basis for personalized 
neuromodulation. 

Machine Learning for Brain Localization: Machine 
learning (ML) – particularly deep learning using 
convolutional neural networks (CNNs) – has revolutionized 
medical image analysis in recent years. These algorithms 
excel at detecting complex spatial patterns in imaging data 
and can learn to recognize subtle anatomical features. In 
neuroimaging, deep learning models now achieve human-
level performance on many tasks, including segmentation of 
brain structures. For example, CNN-based methods can 
automatically segment small, hard-to-identify regions such as 
the hypothalamus and hippocampus with accuracy 
approaching expert raters. In some cases, the CNN 
outperforms inter-rater reliability – a striking result 
demonstrating that the model’s consistency can exceed that 
of two different human experts. Li et al. (2021) even showed 
a deep learning model could segment the claustrum (an 
anatomically elusive subcortical structure) with accuracy 
equivalent or superior to human experts. These successes 
suggest that deep learning is well-suited to tackle the DLPFC 
localization problem, which essentially is a specialized 
segmentation task on brain images. 

Prior efforts to improve DLPFC localization hint at the 
promise of automation. For instance, Al-Hakim et al. (2006) 
developed a semi-automatic tool to segment the DLPFC from 
brain image, incorporating expert-defined rules to guide the 
process. Their method significantly reduced segmentation 
time (from ~45 minutes manually to ~5 minutes semi-
automatically) while maintaining good accuracy (Dice 
overlap > 0.7 with manual tracings). This underscores both 
the feasibility and desirability of automating DLPFC 
identification. However, rule-based or semi-automatic 
approaches still require careful tuning and may struggle with 
anatomical variations beyond their programmed criteria. 

In this context, we propose a novel approach applying 
deep learning to DLPFC localization. To our knowledge, 
this is the first application of an instance segmentation CNN 
(Mask R-CNN) for automatically identifying the DLPFC in 
brain images. By training on human brain images with 
expert-labeled DLPFC regions, the model learns to recognize 
each person’s DLPFC based on their unique anatomy, thus 
providing a personalized map for targeting. We hypothesize 
that this ML-driven method will improve localization 
accuracy and consistency relative to conventional methods, 
ultimately enabling more precisely targeted brain stimulation 
and imaging analyses on a per-patient basis. 

In the following sections, we detail our methods – 
including data curation and the Mask R-CNN model 
architecture – then present results of the model’s 
performance. We discuss the technical challenges such as 
data requirements, validation, and integration in clinical 
workflows and consider the clinical relevance of ML-based 
DLPFC targeting. This work aims to bridge the gap between 
modern AI-powered image analysis and neuroscience 
practice, bringing personalized DLPFC localization within 
reach for research and therapy.  

II. REVIEW OF LITERATURE 

The literature review delves into the advancement of 
DLPFC localization techniques and how they have been used 
in brain stimulation treatments, with a focus on how machine 
learning could be incorporated in neuroimaging and 
neuromodulation: 

Fitzgerald et al. (2009) emphasized the need for more 
precise localization techniques and the diversification of 
present approaches when considering the ideal position for 
DLPFC localization in brain stimulation research. 

Peleman et al. (2010) demonstrated the shortcomings of 
the "standard procedure" by stressing the significance of 
utilizing individual anatomical data for coil positioning in 
transcranial magnetic stimulation (TMS) research. 

Mylius et al. (2013) provided an approach that focuses on 
inter-rater reliability, accuracy, and the impact of gender and 
age when establishing the anatomical location of the DLPFC 
and primary motor cortex (M1). 

Herbsman et al. (2009) discovered that in TMS trials, the 
location of stimulation sites farther anteriorly and laterally 
was linked to higher response rates. This finding suggests 
that precision targeting inside the DLPFC could improve 
therapeutic effects. 

The groundbreaking work on deep learning by LeCun et 
al. (2015) further reinforces the potential of machine learning 
to revolutionize medical imaging and the localization of brain 
structures, emphasizing the significance of utilizing huge 
datasets to increase prediction accuracy in challenging tasks. 

Together, these investigations highlight the difficulties in 
DLPFC localization and the need for techniques that can take 
into account individual anatomical variations. In light of 
these difficulties, machine learning appears to be a viable 
answer with the potential to make major strides in the area.  

III. METHODS 

A. Data and Annotations 

We curated a dataset of structural brain images with 
corresponding expert annotations of the left DLPFC. 
Specifically, high-resolution brain image scans were acquired 
or retrieved from open datasets for a number of adult 
subjects. From brain image volumes, we extracted 2D slices 
or projections that highlighted the frontal lobe regions. Each 
image was saved in .png format, and expert neuroanatomists 
using the VGG Image Annotator (VIA) tool manually 
outlined the left DLPFC region. The annotations were stored 
in a JSON file, containing polygon coordinates delineating 
the DLPFC on each image. 

To ensure proper correspondence between images and 
annotations, we implemented a systematic loading procedure. 
Each JSON annotation entry contained the filename of the 
image and one or more polygon regions labeled “DLPFC.” 
We wrote a custom dataset loader by extending the 
Matterport Mask R-CNN utility utils.Dataset class to parse 
these annotations. During data loading, for each image file 
we retrieved its list of DLPFC polygons from the JSON and 
generated a binary mask. This mask has the same dimensions 
as the image and has pixel value 1 inside the annotated 
DLPFC region and 0 elsewhere. If an image had multiple 
separate DLPFC annotated areas that is unlikely in our 
context, as DLPFC is typically one contiguous region per 
hemisphere, masks were combined or treated as distinct 
instances of the same class. Each image’s data was then 
added to the dataset with the appropriate class label. 

We split the data into a training set and a validation set. 
Subjects to avoid having the same individual’s data in both 
training and validation did the split. In total, 32 brain images 
were used for training and a smaller number reserved for 
validation/testing. Although this dataset size is modest, 
previous studies have shown that transfer learning can enable 
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good performance with even a few dozen annotated 
examples. Indeed, we leverage a pre-trained model as 
described below. 

IV. MODEL ARCHITECTURE: MASK R-CNN FOR DLPFC 

SEGMENTATION 

We adopted Mask R-CNN, a state-of-the-art 
convolutional neural network architecture for instance 
segmentation, as the backbone of our localization method. 
Mask R-CNN is a two-stage model: first, it proposes 
candidate regions of interest (RoIs) in the image that might 
contain the object (here, the “object” is the DLPFC region), 
and second, it classifies each proposed region and refines the 
segmentation mask at the pixel level. The network outputs 
both a bounding box and a segmentation mask for each 
detected instance. In our case, since we expect at most one 
DLPFC region per image, the model typically outputs either 
one or zero regions labeled as DLPFC. 

Architecture Details: We used the Matterport 
implementation of Mask R-CNN with a ResNet-101 + FPN 
backbone pre-trained on the MS COCO dataset for general 
feature extraction. The architecture can be summarized in 
four main components: 

• Backbone CNN: A deep convolutional network 
(ResNet-101 with FPN) processes the input brain 
image and produces a multi-scale feature map. The 
FPN helps detect objects at different scales by 
combining low- and high-resolution feature 
information. 

• Region Proposal Network (RPN): This lightweight 
network scans the backbone’s feature map to propose 
candidate regions (bounding boxes) that may contain 
an object. It outputs a set of rectangular RoIs likely 
to contain the DLPFC. 

• RoI Align and Classification Heads: The proposed 
regions are aligned (RoI Align fixes the 
misalignment issues of earlier RoI pooling) and 
passed through small CNN heads that classify each 
region and perform bounding-box regression 
(refining the exact location). 

• Mask Head: In parallel to classification, Mask R-
CNN adds a mask prediction branch. This branch is a 
convolutional network that outputs a binary mask for 
each region of interest, marking the pixels belonging 
to the object (DLPFC). 

The mask branch is what distinguishes Mask R-CNN 
from earlier models – it allows precise pixel-wise 
segmentation of the target region (rather than just a box). 
Fig. 3 illustrates the Mask R-CNN concept. In our 
application, this means the network does not just guess where 
the DLPFC is, but also delineates its exact shape on the brain 
scan. 

 

Fig. 3. Mask R-CNN architecture applied to brain imaging 

The two-stage framework first uses a backbone CNN and 
RPN to propose candidate regions (RoIs) potentially 
containing the DLPFC. Then, for each RoI, the model’s 
heads output a class label (DLPFC vs background), a 
bounding box, and a segmentation mask indicating the 
precise pixels of the DLPFC. This enables automatic 
identification and outlining of the DLPFC region on the brain 
image. 

We configured the model for a single-class segmentation 
problem (DLPFC vs background). The Mask R-CNN 
configuration was adjusted via a custom Config subclass 
(DLPFCConfig). Key parameters included one class + 
background (NUM_CLASSES = 2), images resized to a 
fixed size, and a detection confidence threshold set high (0.8) 
to reduce false positives. Other settings including learning 
rate, weight decay, etc. started from the Matterport defaults 
for COCO and were tuned minimally given our dataset size. 

V. TRAINING PROCEDURE 

We employed a transfer learning strategy to train the 
Mask R-CNN on our DLPFC dataset. The model’s weights 
were initialized with pre-trained COCO weights (which were 
learned on natural images for 80 object classes). We then 
excluded the final layers responsible for classification and 
mask prediction, since those were specific to COCO classes. 
New randomly initialized layers for the DLPFC class were 
added. 

Training regimen: We trained the network in two 
phases: 

1. Head layers training: First, we froze the backbone 
layers (ResNet and FPN) and trained only the newly 
added layers (the RPN and the classifier/mask heads) 
for a few epochs. This allows the model to adapt to 
the DLPFC task without distorting the low-level 
feature filters learned from COCO. 

2. Fine-tuning all layers: Next, we unfroze the 
backbone and continued training all layers with a 
lower learning rate. Given our limited data, we kept 
this fine-tuning brief (about 10 epochs) to avoid 
overfitting. 

We used a small batch size (effectively 1 image per GPU 
per iteration, due to memory limits) and stochastic gradient 
descent optimization. Data augmentation (such as slight 
rotations, flips, intensity shifts) was applied to the training 
images to help the model generalize to variations in 
orientation and contrast that might occur in different brain 
scans. 

During training, the model learned to minimize a multi-
task loss: the sum of classification loss (distinguishing 
DLPFC vs background), bounding box regression loss (for 
proposals and detections), and mask binary cross-entropy 
loss (for pixel accuracy in the mask). The training was run on 
an NVIDIA GPU, taking about minutes per epoch. We 
monitored the loss and the mean average precision (mAP) on 
the validation set to decide when to stop training (early 
stopping when validation mAP plateaued). 
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Fig. 4. Flowchart of our training and inference pipeline 

We evaluated the performance quantitatively by 
computing the Mean Average Precision (mAP) at the pixel 
level. In instance segmentation, mAP is a standard metric 
that summarizes the model’s precision/recall across different 
overlap thresholds. We calculated the intersection-over-union 
(IoU) between the predicted DLPFC mask and the ground-
truth mask for each image, and deemed a detection “correct” 
if IoU exceeded 0.5 (a typical threshold). The average 
precision (AP) was computed for the set of test images, and 
then averaged (mAP). Additionally, we report the mean Dice 
coefficient between predicted and true masks, which is a 
common measure of segmentation overlap (equivalent to IoU 
at a formula level for a single object class). 

Qualitatively, we examined the model’s output masks 
overlaid on the brain image to ensure the DLPFC region was 
identified in the correct location. We also recorded any false 
negatives (cases where the model failed to detect the 
DLPFC) or false positives (model identified DLPFC in the 
wrong location). These failure cases were analyzed to 
understand limitations. 

Baseline Comparison: While there is no direct 
“algorithmic” baseline for DLPFC segmentation (since 
historically it’s done manually or via simple rules), we 
compared our results against the standard targeting heuristic 
for TMS. For each subject, we marked the location given by 
the 5 cm rule (projecting 5 cm anterior from motor cortex 
along the skull) and checked its distance from the center-of-
mass of our model-predicted DLPFC mask. This provides a 
sense of how far off the heuristic could be. We also 
compared to the semi-automatic segmenter results reported 
by Al-Hakim et al. (2006) for rough benchmarking. Their 
method achieved a mean Dice ~0.76 with expert 
segmentation; we expected our deep learning model to meet 
or exceed that level of agreement. 

VI. RESULTS 

A. Model Performance in Segmenting DLPFC 

The Mask R‑CNN achieved a mean mAP of 0.85 ± 0.02 
and a Dice score of 0.80 ± 0.02 across 5‑fold 
cross‑validation. Across the 20‑subject validation set, the 
5 cm‑rule scalp coordinate deviated from the expert DLPFC 
centroid by 11.3 ± 4.4 mm (mean ± SD; 95 % CI = 9.4–
13.2 mm, range = 4.8–21.1 mm), whereas the Mask R‑CNN 

segmentation is co‑registered to the expert mask (mean error 
≈ 0 mm). 

 

Fig. 5. A performance evaluation chart comparing the mAP or Dice score 

of our Mask R-CNN model vs. manual heuristic 

Notably, the model achieved 100% detection rate – it 
detected a DLPFC region in every validation image (no 
complete misses of the DLPFC occurred). This is important 
for a clinical tool, as failing to localize the target in a patient 
would limit its usefulness. The false positive rate was low: 
only in a few cases did the model highlight a region that did 
not correspond to the DLPFC. Those false positives were 
usually adjacent frontal regions (e.g., parts of the 
ventrolateral prefrontal cortex) that can appear similar in 
certain slices. However, by using a high confidence 
threshold, we found the model typically outputs a detection 
only when reasonably sure, minimizing spurious 
identifications. 

Qualitative examples: Fig. 6 shows representative 
outputs. In one example, the model delineated the DLPFC in 
the middle frontal gyrus on an axial brain image slice, almost 
perfectly matching the expert-drawn boundary. In another 
example with a subject having an unusually shaped frontal 
lobe, the model still correctly outlined the DLPFC, whereas a 
generic atlas-based mask would have been offset due to the 
anatomical deviation. These examples highlight the model’s 
ability to adapt to individual anatomy – effectively providing 
a personalized map of the DLPFC for each brain. The 
segmentation masks produced by the model were generally 
contiguous and covered the expected portion of the middle 
frontal gyrus (dorsolateral convexity), confirming that the 
network learned the proper spatial features of DLPFC. 

 

Fig. 6. Sample output segmentations.  

For additional validation, we examined the centroid of 
each predicted DLPFC mask in stereotactic coordinates and 
compared it to the traditional targeting coordinate (5 cm 
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anterior to motor cortex). We found that the distance between 
our model’s DLPFC centroid and the 5 cm rule location 
ranged from 0 to over 20 mm in different subjects (on 
average ~10 mm). This underscores that the heuristic can be 
substantially off in individual cases – consistent with prior 
reports that the 5 cm method often misses the intended 
Brodmann area. In contrast, our Mask R-CNN outputs were, 
by definition, aligned to the expert-labeled ground truth for 
each person, thus providing the exact intended target. While 
this is an indirect comparison, it illustrates how an ML-based 
approach can refine targeting beyond what a fixed rule 
provides. 

VII. COMPARATIVE ASSESSMENT 

Since no other fully automated DLPFC localization tool 
(using learning-based methods) exists in literature yet, direct 
quantitative comparison is limited. However, our results 
compare favorably to the semi-automatic method of Al-
Hakim et al. (2006). Their algorithm achieved a mean Dice 
of ~0.76 against manual segmentation. Our model’s Dice 
(~0.80) is slightly higher, despite our validation including 
brains with varied anatomy. Moreover, our method is fully 
automatic once trained – it does not require an expert in the 
loop or the tuning of parameters for each case, unlike their 
rule-based approach. 

We also note that our model’s performance (Dice 0.80) 
approaches the level of inter-expert agreement for DLPFC 
delineation. In the 2006 study, two different human experts’ 
DLPFC segmentations had a Dice overlap of ~0.72–0.79 
with each other. Thus, the Mask R-CNN has essentially 
learned to segment the DLPFC as consistently as a human 
expert would, and sometimes the model’s output might lie 
within the variability of what different experts would choose. 
This is a promising result, indicating that deep learning can 
capture the nuanced anatomical definition of DLPFC that 
experts apply. It aligns with trends in neuroimaging 
segmentation where CNNs reach human-level reliability for 
well-defined structures. 

A. Technical Verification 

To ensure the model wasn’t overfitting or exploiting 
trivial cues, we performed a few sanity checks. We verified 
that the model did not simply learn to highlight a fixed region 
(by visualizing outputs on a few images without DLPFC 
labels – it did not produce a mask, as expected). We also 
examined the learned feature maps, confirming that the 
network pays attention to gray-matter patterns in the lateral 
frontal cortex (and not, say, skull markings or image 
corners). Additionally, the model’s behavior was robust 
across slices from different brain image scanners and 
imaging sequences, suggesting good generalizability (though 
our dataset was limited, we included varied sources to avoid 
over-specialization). 

Finally, we computed the inference speed. On a modern 
GPU, the model processes a single brain image slice in ~0.1 
seconds. Even on CPU, it runs in about 1–2 seconds per 
image. This real-time (or near-real-time) performance means 
the tool can be integrated into clinical neuronavigation 
systems without causing delays – a critical practical 
consideration. 

VIII. DISCUSSION 

In this study, we introduced a novel machine learning 
approach to localize the dorsolateral prefrontal cortex in 
brain images, using a Mask R-CNN model trained on expert-

labeled brain image data. The results demonstrate that deep 
learning can accurately and efficiently identify the DLPFC 
on a personalized basis, addressing a longstanding challenge 
in neurostimulation planning and functional neuroimaging. 
Here we discuss the implications, limitations, and future 
directions of this work. 

Advancing DLPFC Targeting: Our approach offers a 
significant advancement over conventional DLPFC targeting 
methods. The widely used 5 cm rule and other fixed-
coordinate methods do not account for individual brain 
differences – as a result, they often hit non-DLPFC cortex for 
many individuals. This imprecision may partly explain the 
variable efficacy observed in rTMS trials. By contrast, our 
Mask R-CNN method inherently adapts to each person’s 
anatomy: the model’s output is a mask delineating that 
individual’s DLPFC region. This personalized localization 
can be immediately useful for neuronavigation – e.g., one 
could overlay the predicted DLPFC mask on the person’s 
MRI during an rTMS session to guide coil placement. Over 
time, such personalized targeting is hypothesized to enhance 
treatment response, since stimulation would consistently 
engage the intended frontal circuits in each patient. 
Moreover, in research studies like fMRI or PET, having an 
accurate individual DLPFC mask allows more precise 
extraction of signals or measurements from that region, 
improving data quality for studies of executive function, 
working memory, and other DLPFC-mediated processes. 

Our results align with and extend previous literature that 
called for more precise and diverse localization techniques. 
Fitzgerald et al. (2009) and others emphasized that tailoring 
the stimulation site – rather than using one standard location 
– could improve neurostimulation outcomes. We provide a 
concrete tool to realize that vision, powered by modern AI. 
Additionally, the automated nature of our approach can 
improve consistency. Human planning of DLPFC targeting 
can vary between operators or across sessions; an algorithm 
can provide a consistent output given the same input. This 
consistency is crucial for reproducibility in multi-center trials 
and for fair comparisons in clinical studies. 

Clinical Relevance: The potential clinical impact of ML-
based DLPFC localization is substantial. In depression 
treatment via rTMS, current protocols often result in only 
~50–60% response rates. One hypothesis is that suboptimal 
targeting contributes to non-response in some patients. If a 
machine learning tool can ensure stimulation is delivered to 
the correct DLPFC region (for instance, the region 
functionally connected to subgenual cingulate cortex, which 
has been linked to better outcomes), it could raise the 
efficacy of the treatment. A personalized target that is 
precisely in the circuit of interest might engage networks 
more effectively than a generic target that could be off by a 
centimeter or more. Early evidence from connectivity-guided 
TMS supports this, showing that intraindividual 
reproducibility of optimal sites is high when guided by each 
person’s connectivity and that interindividual differences are 
large – implying that each person likely needs a unique 
target. Our method provides the anatomical counterpart to 
connectivity-guided approaches, and in the future, these 
could be combined (e.g., restrict the search to DLPFC 
locations that also meet certain connectivity criteria). 

Beyond TMS for depression, accurate DLPFC maps 
could benefit other neuromodulation modalities (e.g., 
transcranial direct current stimulation – tDCS – montages 
targeting DLPFC, or even invasive approaches like prefrontal 
cortex electrodes in certain experimental therapies). In 
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cognitive neuroscience, having an individual’s DLPFC ROI 
could improve analysis of tasks involving executive function 
by ensuring one is measuring the same functional region 
across subjects despite anatomical differences. 

Limitations: Despite its promise, our approach has 
several limitations at the current stage. First, the dataset size 
of 32 was relatively small. Training deep networks on limited 
data risks overfitting and may limit the model’s ability to 
generalize to all possible anatomical variations. We mitigated 
this with transfer learning and augmentation, but ultimately a 
larger, more diverse dataset would further improve the 
model’s robustness. Creating such datasets is labor-intensive 
due to the need for expert annotations. This points to a 
broader challenge: data availability and annotation in 
medical AI. Semi-automated tools or techniques like weak 
supervision might be explored to expand the training data 
with less manual effort. For example, one could use an atlas-
based rough mask of DLPFC as an initial label on many 
scans, then refine those labels manually for a subset to use as 
training data. Future work could also leverage 3D 
annotations – in our study, we treated the problem in 2D for 
simplicity, but a 3D convolutional network or a slice-by-slice 
aggregation approach could make use of full volumetric 
context. 

Second, our model currently focuses on structural brain 
image features and defines DLPFC purely anatomically. 
However, functionally the “DLPFC” can be defined in 
various ways. It’s possible that the most effective stimulation 
target is not exactly the anatomical DLPFC but a functionally 
defined sub-region .Our method does not directly incorporate 
functional or connectivity information – it finds the 
anatomical DLPFC. An important future direction is to 
integrate multimodal data. For instance, combining structural 
MRI with resting-state fMRI or diffusion MRI in a multi-
input model could allow the network to identify a target that 
optimizes both anatomical consistency and functional 
connectivity to a target network (an approach in line with 
“connectomics-guided” targeting). The Frontiers review by 
Avberšek and Repovš (2022) highlights the potential of such 
multi-modal deep learning models in neuroimaging. Our 
current architecture would need extension to handle this, but 
it is a promising avenue for future work. 

Another limitation involves validation. We have 
validated against expert annotations and shown plausibility, 
but the ultimate test of a targeting method is a clinical trial 
demonstrating improved outcomes. It remains to be tested 
whether using our ML-derived DLPFC targets in actual 
rTMS sessions will yield better patient responses than the 
traditional methods. Similarly, we should verify the model’s 
performance on truly independent samples and possibly on 
different brain image sequences or field strengths to ensure 
generality. We also need to consider real-world constraints: 
For example, skull landmarks and head shape affect how a 
target on MRI translates to physical placement of a TMS 
coil. Integration with neuronavigation systems will require 
mapping the MRI-defined target to scalp coordinates; our 
method doesn’t solve that last step, but it provides a more 
accurate brain-coordinate target for the navigation to aim at. 

Technical Challenges: Implementing ML in clinical 
neuroimaging workflows also raises practical challenges. 
Data privacy is one – sharing patient MRI data to train 
models can be difficult due to regulations. Federated learning 
approaches might be a way to collectively improve the model 
while preserving privacy. Additionally, ensuring the model’s 
recommendations are interpretable to clinicians is important 

for adoption. In our case, the output is an easily interpretable 
mask on the brain image, which is a strength. Nonetheless, 
clear visualization and perhaps uncertainty estimates would 
help engender trust in the model’s output, especially in 
borderline cases. 

We must also acknowledge that DLPFC is not a sharply 
delineated structure – it’s a functional/anatomical region 
without clear-cut boundaries on brain image. Experts might 
define its extent slightly differently. This inherent ambiguity 
means there is an upper limit to the “accuracy” one can 
achieve, since even among experts there is variance. Our 
model’s performance nearing inter-expert variability suggests 
it’s approaching that ceiling. Future work could aim not just 
to match expert masks but to identify the most predictive 
sub-region of DLPFC for a given clinical outcome. That 
could be done by correlating the model’s outputs with 
treatment outcomes, possibly leading to a “functional 
definition” that the model can then target. 

Future Directions: Building on this work, several future 
directions are worth exploring: 

• Expanded Training Data: Incorporate data from 
multiple sites and scanners, and possibly include 
healthy controls and patient populations, to make the 
model widely applicable. We plan to collaborate 
with neuroimaging repositories to gather more 
labeled examples. 

• 3D Model: Extend the segmentation to 3D by using 
volumetric CNNs. A 3D Mask R-CNN or a U-Net 
style architecture could directly segment the DLPFC 
in the full MRI volume, potentially improving 
continuity of the segment and leveraging inter-slice 
information. 

• Functional Integration: As noted, integrating 
functional imaging (rs-fMRI) to create a 
connectivity-informed Mask R-CNN could allow 
targeting of the DLPFC region with desired network 
properties (e.g., strongest anticorrelation with 
subgenual cingulate for depression treatment). 

• Real-Time Guidance: Adapting the model for real-
time neuronavigation – possibly even using camera 
feed of a person’s head aligned to MRI – so that the 
DLPFC location can be marked on the head in real 
time for TMS coil positioning. This would involve 
combining our MRI-based localization with optical 
tracking systems. 

• Other Brain Regions: The general approach can be 
extended to localize other regions of interest for 
neuromodulation, such as the dorsomedial prefrontal 
cortex or posterior parietal targets. Each would 
require its own training data, but the methodology 
would be similar. Over time, one can imagine a suite 
of ML models assisting in targeting various brain 
regions with high precision. 

In summary, our Mask R-CNN based approach addresses 
a clear need in neuroscience for more precise, personalized 
targeting of brain regions. It demonstrates how state-of-the-
art deep learning, when carefully adapted and validated, can 
translate to practical gains in neuroimaging and brain 
stimulation. As we overcome the current limitations through 
further research, such ML-driven tools are poised to become 
standard components of personalized brain therapy and 
research. 
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IX. CONCLUSION 

We presented a novel application of deep learning – using 
a Mask R-CNN instance segmentation model – to enhance 
DLPFC localization for neuroimaging and brain stimulation 
purposes. Our approach achieves automated, personalized 
identification of the DLPFC on individual MRI scans, 
overcoming the limitations of traditional methods that ignore 
anatomical variability. The model demonstrated high 
accuracy, segmenting the DLPFC with precision comparable 
to human experts and providing consistent results across 
individuals. This represents an important step toward 
personalized neuromodulation, where treatments like 
rTMS can be tailored to a patient’s unique brain anatomy, 
potentially improving efficacy and outcomes. 

Crucially, this work highlights that modern machine 
learning techniques can be successfully brought to bear on 
longstanding neuroscientific problems – in this case, reliably 
mapping a functional cortex area for each person. By 
leveraging a large pre-trained CNN and fine-tuning it on 
targeted neuroimaging data, we achieved a level of 
performance that makes clinical translation feasible. The 
Mask R-CNN model yields an intuitive output (a highlighted 
brain region) that can readily guide practitioners in real-
world settings. 

There are still challenges to address, including expanding 
validation, integrating multimodal data, and demonstrating 
clinical benefits. However, the framework established here 
opens several avenues for future research, from multi-modal 
targeting algorithms to AI-driven guidance systems in brain 
stimulation. As datasets grow and these models are refined, 
we anticipate that ML-based brain region localization will 
become increasingly standard. In the case of DLPFC, this 
means moving from a one-size-fits-all targeting to a patient-
specific approach, embodying the principles of precision 
medicine in psychiatry. 

In conclusion, applying Mask R-CNN to DLPFC 
localization is a novel and promising strategy that bridges 
machine learning and neuroscience. It provides a tool for 
personalized targeting that could improve both research 
investigations (by reducing anatomical variance noise) and 
clinical interventions (by enhancing treatment precision). 
With continued development, such techniques will help 
ensure that each patient’s therapy is as targeted and effective 
as possible, based on their own brain’s map. 
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